Field-based trials and genotype evaluation until yielding stage are two important steps in improving the salt tolerance of crop genotypes and identifying what parameters can be strong candidates for the better understanding of salt tolerance mechanisms in different genotypes. In this study, the salt tolerance of 18 bread wheat genotypes was evaluated under natural saline field conditions and at three saline irrigation levels (5.25, 8.35, and 11.12 dS m−1) extracted from wells. Multidimensional evaluation for salt tolerance of these genotypes was done using a set of agronomic and physio-biochemical attributes. Based on yield index under three salinity levels, the genotypes were classified into four groups ranging from salt-tolerant to salt-sensitive genotypes. The salt-tolerant genotypes exhibited values of total chlorophyll, gas exchange (net photosynthetic rate, transpiration rate, and stomatal conductance), water relation (relative water content and membrane stability index), nonenzymatic osmolytes (soluble sugar, free proline, and ascorbic acid), antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase), K+ content, and K+/Na+ ratio that were greater than those of salt-sensitive genotypes. Additionally, the salt-tolerant genotypes consistently exhibited good control of Na+ and Cl− levels and maintained lower contents of malondialdehyde and electrolyte leakage under high salinity level, compared with the salt-sensitive genotypes. Several physio-biochemical parameters showed highly positive associations with grain yield and its components, whereas negative association was observed in other parameters. Accordingly, these physio-biochemical parameters can be used as individual or complementary screening criteria for evaluating salt tolerance and improvement of bread wheat genotypes under natural saline field conditions.
The effect of simultaneous dehydration-reaction (SDR) on Amadori rearrangement product (ARP) N-(1-deoxy-d-xylulos-1-yl)-glutathione and its key degradation products, 3-deoxyxylosone (3-DX) and 1-deoxyxylosone (1-DX), were investigated in an aqueous glutathione-xylose (GSH-Xyl) system. The yield of ARP was increased to 67.98% by SDR compared with 8.44% by atmospheric thermal reaction at 80 °C. Reaction kinetics was applied to analyze the mechanism and characteristics of ARP formation and degradation under SDR. ARP formation and degradation rate was highly dependent on temperature, and the latter was more sensitive to temperature. By regulating the reaction conditions of temperature and pH, the ratio of ARP formation rate constant to its degradation rate constant could be controlled to achieve an efficient preparation of ARP from GSH-Xyl Maillard reaction through SDR.
The formation conditions of the Amadori compound (ARP) N-(1-deoxy-d-xylulos-1-yl)-alanine were determined in an aqueous Maillard reaction between l-alanine and d-xylose under a two-step temperature rising process with (−)-epigallocatechin gallate (EGCG) as an indicator followed by browning intensity detection of the final Maillard reaction products (MRPs). To clarify the mechanism of EGCG indication on the ARP formation, the change in the concentration of some key products generated during the Maillard reaction with EGCG addition was investigated. Results showed an inhibition effect of EGCG on the browning precursor formation through the generation of ARP-EGCG adducts and deoxyosone-EGCG adducts, which was proposed as an important pathway to inhibit browning during the Maillard reaction and to indicate ARP formation.
Imidacloprid (IC) is a systemic insecticide related to the tobacco toxin nicotine. IC is a toxic substance frequently used into combat insects, rodents and plants pests and other creatures that can pose problems for agriculture. We, therefore, planned this study to assess risk factors, biochemical and histological alterations associated with hepatotoxicity and nephrotoxicity. Forty-eight adult male albino mice were divided into four groups of 12 animals each. All the animals were given standard synthetic pellet diet. One group served as control, and the other three were served as experimental groups. Decrease in the body weight of the high dose group was observed at 15 mg/kg/day, and no mortality occurred during the treatment period. High dose of imidacloprid caused a significant elevation of serum clinical chemistry parameters, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate kinase (SGPT), alkaline phosphatase (ALP) and total bilirubin (TBIL). Histology of liver and kidney indicates hepatotoxicity and nephrotoxicity at a high dose of imidacloprid. Based on the morphological, biochemical and histopathological analysis, it is evident that imidacloprid induced toxicological effects at 15 mg/kg/day to mice. The results of the present study demonstrate that IC had significant effects on body weight, liver functions and kidney (p < 0.05) at a dose of 15 mg/kg body weight. IC treatment 5 and 10 mg/kg/day may be considered as no observed adverse effect level (NOAEL) for mice. It was concluded that IC can cause hepatotoxicity and nephrotoxicity at a dose much lower than the LD50 (131 mg/kg body weight) in mice.
Bio-activated organic fertilizers (BOZ) were produced by enriching the zinc oxide (ZnO)-orange peel waste composite with Zn solubilizing bacteria (ZSB: Bacillus sp. AZ6) in various formulations (BOZ1 (9:1), BOZ2 (8:2), BOZ3 (7:3) and BOZ4 (6:4)). The produced BOZs, along with ZnO, ZnSO4, ZSB were applied to maize crop (Zea mays L.) under field conditions in two different cropping season and the growth, yield, physiology, plant Zn contents and quality of maize were investigated. Results revealed significant variation in the aforementioned parameters with the applied amendments. The BOZ4 performed outclass by exhibiting the highest plant growth, yield, physiology, Zn contents, and quality. On average, an increase of 53%, 49%, 19%, 22%, 10%, 4%, and 30% in plant height was noticed with BOZ4 application over control, ZnO, ZnSO4, BOZ1, BOZ2, BOZ3, and ZSB, respectively. BOZ4 enhanced the dry shoot-biomass 46% than control. Likewise, the photosynthetic rate, transpiration rate, stomatal conductance, chlorophyll contents, carotenoids, and carbonic anhydrase activity were increased by 47%, 42%, 45%, 57%, 17%, and 44%, respectively, under BOZ4 over control in both cropping seasons. However, BOZ4 reduced the electrolyte leakage by 38% as compared to control in both cropping seasons. BOZ4 increased the Zn contents of grain and shoot by 46% and 52%, respectively, while reduced the phytate contents by 73% as compared to control. Application of BOZ4 revealed highest average fat (4.79%), crude protein (12.86%), dry matter (92.03%), fiber (2.87%), gluten (11.925%) and mineral (1.53%) contents, as compared to control. In general, the impact of cropping seasons on maize growth, yield, physiology, Zn contents, and quality were non-significant (with few exceptions). Thus, bio-activation of ZnO with ZSB could serve as an efficient and economical strategy for boosting up the growth, yield, physiological, and quality parameters of maize under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.