Flonicamid is a chordotonal modulator and novel systemic insecticide that has been used frequently for controlling a broad range of insect pests. The risk of flonicamid resistance was assessed through laboratory selection and determining inheritance pattern and cross-resistance potential to five insecticides in house fly, Musca domestica L. Very low to high flonicamid resistance in M. domestica populations was found compared with the susceptible strain (SS). A flonicamid-selected (Flonica-RS) M. domestica strain developed 57.73-fold resistance to flonicamid screened for 20 generations compared with the SS. Overlapping 95% fiducial limits of LC50 of the F1 and F1ǂ, and dominance values (0.87 for F1 and 0.92 for F1ǂ) revealed an autosomal and incomplete dominant flonicamid resistance. The monogenic model of resistance inheritance suggested a polygenic flonicamid resistance. The Flonica-RS strain displayed negative cross-resistance between flonicamid and sulfoxaflor (0.10-fold) or clothianidin (0.50-fold), and very low cross-resistance between flonicamid and flubendiamide (4.71-fold), spinetoram (4.68-fold), or thiamethoxam (2.02-fold) in comparison with the field population. The estimated realized heritability (h2) value of flonicamid resistance was 0.02. With selection mortality 40–90%, the generations required for a 10-fold increase in LC50 of flonicamid were 94–258 at h2 (0.02) and slope (3.29). Flonicamid resistance was inherited as autosomal, incomplete dominant, and polygenic in the Flonica-RS. Negative or very low cross-resistance between flonicamid and sulfoxaflor, clothianidin, flubendiamide, spinetoram, and thiamethoxam means that these insecticides can be used as alternatives for controlling M. domestica. These data can be useful in devising the management for M. domestica.
Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects.
This study evaluates three popular loose plastic packaging namely polyethylene (PE), polypropylene (PP) and polyvinylchloride (PVC) for damage in packaging and weight loss in packed wheat flour by Tribolium castaneum Herbst (Coleoptera: Tenebriondiae) for three different time periods. The study lasted for three months and data was recorded three times with 30 day interval between data recordings to see damages in packaging, i.e., holes and penetrations made by beetles in packaging; number of beetles inside packages were counted to see their population growth after a given time period inside packed wheat flour and weight loss in wheat flour. Maximum holes by beetles were in polyethylene packaging, penetrations and numbers of beetles were more in polyethylene packaging type. Similarly weight loss in wheat flour was also more in polyethylene bags in contrast with other packaging materials used (P < 0.05). Effect of time period showed significantly more weight loss in wheat flour after 90 days than after 60 or 30 days (P < 0.05) however time period had non-significant effect on holes made by beetles into packaging and penetrations as well as numbers of beetles counted or their population growth after given time period in different packaging materials (P > 0.05). These results revealed that out of three packaging materials tested polyethylene was a susceptible packaging material because it had maximum number of holes and penetrations by insects into them. Similarly maximum weight loss occurred in polyethylene. Effect of time period showed non-significant effect on holes and insect penetrations into packaging materials. However more weight loss occurred after more time period than after less time period. These results are important and can be employed for integrated management of T. castaneum regarding packed foodstuffs i.e., wheat flour.
Drought stress is one of the major yield constraints for cereal crops. Traditionally, for developing drought tolerant cultivars, selection either direct or indirect is practiced. Although this approach is effective, yet time consuming and labour intensive. Identification of drought related quantitative trait loci (QTLs) coupled with marker assisted selection has shown some positive results. Transgenic and "omics" technologies promise to make progress in breeding for drought tolerance through a more fundamental understanding of underlying mechanisms of drought tolerance and identifying potential candidate genes. These new approaches provide opportunities to direct the continued breeding of genotypes giving stable yields under drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.