Blockchain technology has advanced rapidly in recent years and is now widely used in a variety of fields. Blockchain appears to be one of the best solutions for managing massive heterogeneous devices while achieving advanced data security and data reputation, particularly in the field of large-scale IoT (Internet of Things) networks. Despite the numerous advantages, there are still challenges while deploying IoT applications on blockchain systems due to the limited storage, power, and computing capability of IoT devices, and some of these problems are caused by the consensus algorithm, which plays a significant role in blockchain systems by ensuring overall system reliability and robustness. Nonetheless, most existing consensus algorithms are prone to poor node reliability, low transaction per second (TPS) rates, and scalability issues. Aiming at some critical problems in the existing consensus algorithms, this paper proposes the Efficient Byzantine Reputation-based Consensus (EBRC) mechanism to resolve the issues raised above. In comparison to traditional algorithms, we reinvented ways to evaluate node reliability and robustness and manage active nodes. Our experiments show that the EBRC algorithm has lower consensus delay, higher throughput, improved security, and lower verification costs. It offers new reference ideas for solving the Internet of Things+blockchain+Internet court construction problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.