Abstract. The ability of soil microorganisms and organic manure to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P utilization efficiency in soil-plant systems. Our objective was to examine the P mineralization potential of two soluble P fertilizers (SPF), i.e., single superphosphate (SSP) and diammonium phosphate (DAP), and of insoluble rock phosphate (RP) with and without phosphate-solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P utilization efficiency (PUE) of chilli (Capsicum annuum L.). An incubation study was carried out on a loam (slightly alkaline) soil with 12 treatments: T 0 -control; T 1 -RP; T 2 -SSP; T 3 -DAP; T 4 -PM; T 5 -1/2 RP+1/2 SSP; T 6 -1/2 RP+1/2 DAP; T 7 -1/2 RP+1/2 PM; T 8 -RP+PSB; T 9 -1/2 RP+1/2 SSP+PSB; T 10 -1/2 RP+1/2 DAP+PSB; and T 11 -1/2 RP+1/2 PM+PSB. Phosphorus mineralization was measured by analyzing extractable P from the amended soil incubated under controlled conditions at 25 • C for periods of 0, 5, 15, 25, 35 and 60 days. A complementary greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) as a test crop. Growth, yield, P uptake and PUE of the chilli was determined during the study. Results indicated that P mineralization in soil amended with RP was 6.0-11.5 mg kg −1 , while both soluble P fertilizers resulted in 68-73 mg P kg −1 at day 0, which decreased by 79-82 % at the end of incubation. The integrated use of PSB and PM with RP in T 11 stimulated P mineralization by releasing a maximum of 25 mg P kg −1 that was maintained at high levels without any loss. Use of PSB decreased soil pH. In the greenhouse experiment, RP alone or RP+PSB did not have a significant impact on plant growth. However, the combined use of RP, PM and PSB in T 11 resulted in similar growth, yield and P uptake of chilli as DAP. The PUE of applied P varied from 4 to 29 % and was higher in the treatments that included PSB. We conclude that the use of PSB and PM with insoluble RP or with soluble P fertilizers could be a promising approach to enhance P availability from both low-grade RP and SPF for crop production in intensive cropping systems.
Silver is a poisonous but precious heavy metal that has widespread application in various biomedical and environmental divisions. Wide-ranging usage of the metal has twisted severe environmental apprehensions. Henceforth there is a cumulative call for the progress of modest, low-cost and, the ecological method for remediation of silver. In the present study, Bacillus cereus was isolated from contaminated soil. Various experimental factors like the amount of AgNO3, inoculum size, temperature, time, and pH were improved by using central composite design (CCD) grounded on response surface methodology (RSM). Optimized values for AgNO3 (1 mM) 10 ml, inoculum size (Bacillus cereus) 8.7 ml, temperature 48.5 °C, time 69 h, and pH 9 showed in the form of optimized ramps. The formed nanoparticles stayed characterized by UV–visible spectrophotometer, Scanning Electron Microscopy, Fourier transform infra-red spectrometry, particle size analyzer, and X-ray diffraction. The particle size ranges from 5 to 7.06 nm with spherical form. The antimicrobial effectiveness of synthesized nanoparticles was tested contrary to five multidrug resistant microbial strains, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Porteus mirabilis by disc diffusion method. The minimum inhibitory concentrations and minimum lethal concentrations were detected by the broth macro dilution method. 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) was used to check the free radical scavenging ability of biogenic silver nanoparticles. Similarly, anti-radical activity was checked by 2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) with varying time intervals. Catalytic potential of biosynthesized silver nanoparticles was also investigated.
In this research, the effects of transition metal (Ni) doping to metal-oxide nanoparticles (TiO 2 ) were studied. Various weight ratios (5, 10, 15, and 20%) of Ni-to-TiO 2 nanoparticles were synthesized using the sol-gel technique. These doped nanoparticles were prepared using titanium butoxide and nickel nitrate as precursors and methanol as a solvent. The effects of Ni doping to TiO 2 were examined using a variety of characterization techniques, X-ray diffraction (XRD), Fourier-transform-infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), and vibrating sample magnetometer (VSM). The XRD reveals that the Ni-doped TiO 2 crystallizes in a tetragonal structure with anatase phase. The particle size and lattice strain were calculated by Williamson-Hall equation. The presence of strong chemical bonding and functional groups at the interface of TiO 2 nanoparticles was confirmed by FTIR. The optical properties of undoped and doped samples were recorded by UV-Vis spectroscopy. The saturation magnetization (M s ) was found higher for undoped as compared to doped samples. The surface morphology and the element structure of the Ni-doped TiO 2 nanoparticles were examined by FESEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.