A simple, low-cost technique has been developed for the rapid fabrication of single-layered paper-based microfluidic devices (μPADs). This technique, for the first time, made use of the deposition of patterned adhesive tape into the filter paper to construct hydrophobic barriers, with the help of toluene. Unlike other reported multi-layered μPADs that merely made use of adhesive tape as a separate layer for sealing or fluid flow controlling, the patterned adhesive tape was simultaneously dissolved and penetrated into the filter paper, which resulted in the successful transfer of the pattern from the tape to the filter paper. To demonstrate the effectiveness of this approach, nitrite and glucose were individually measured; detection limits as low as 0.015 ± 0.004 mM and 0.022 ± 0.006 mM were reported for nitrite and glucose, respectively. Multiplexed analysis of both analytes was also carried out with respective detection limits of 0.048 ± 0.005 mM and 0.025 ± 0.006 mM for nitrite and glucose. The application of the method was demonstrated by measuring nitrite and glucose in spiked artificial urine samples and satisfied recovery results were obtained.
The concentrations of nitrite and thiocyanate in saliva can be used as the biomarkers of the progression of periodontitis disease and environmental tobacco smoke exposure, respectively. Therefore, it is particularly necessary to detect these two indicators in saliva. Herein, the three-dimensional single-layered paper-based microfluidic analytical devices (3D sl-μPADs) were, for the first time, fabricated by the spraying technique for the colorimetric detection of nitrite and thiocyanate at the same time. The conditions for 3D sl-μPADs fabrication were optimized in order to well control the penetration depth of the lacquer in a paper substrate. Then, the developed 3D sl-μPADs were utilized to simultaneously detect nitrite and thiocyanate and the limits of detection are 0.0096 and 0.074 mM, respectively. What is more, the μPADs exhibited good specificity, good repeatability, and acceptable recoveries in artificial saliva. Therefore, the developed 3D sl-μPADs show a great potential to determine nitrite and thiocyanate for the assessment of the human health.
A novel, simple, and low-cost spray painting technique has been developed for the fabrication of microfluidic paper-based devices. The devices that we developed utilize aerosol spray paint to build hydrophobic barriers and employ a hole puncher to obtain paper-based patterned layers and paper dots without using any specialized instruments (e.g., without a laser cutter). The entire manufacturing process is extremely simple, inexpensive, and rapid, which means that it can be applied broadly. Furthermore, the application of the device to iron detection was demonstrated. A linear relationship between the colour value and the iron concentration was observed from 0 to 0.02 g/L. The developed microfluidic paper-based device for iron detection exhibited a low detection limit (0.00090 g/L), good selectivity, and acceptable recovery.
The single-layered paint-spraying paper based microfluidic devices (sp-μPADs) have been for the first time integrated with the colorimetric assay. The polymethyl methacrylate (PMMA) board was applied as the mask instead of the iron mask, reducing the power requirement of the cutting machine. The paint was sprayed into the paper, which blocked the pores of the paper and constructed the hydrophobic barrier on the paper. The paint barrier was highly resistant to the various kind of chemicals and the minimum channel dimensions was 1.4 mm. By using the PMMA masks with different designs, the sp-μPADs with different designs have been fabricated and successfully applied to the single analyte assay of iron or bovine serum albumin (BSA) and the simultaneous assay of copper and nickel. Moreover, the feasibility of the multiplexed assay of eight analytes was also demonstrated. The analytical performances indicated that the fabricated sp-μPADs offered a promising platform in the colorimetric assays of either single or multiple analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.