Background Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with cattle productivity. Much attempt has been made to examine the mechanisms of male sterility caused by spermatogenic arrest, but yet there is no research systematically and precisely elucidated testis gene expression profiling between cattleyak and yak. Methods To explore the higher resolution comparative transcriptome map between the testes of yak and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest in cattleyak. We characterized the comparative transcriptome profile from the testes of yak and cattleyak using high-throughput sequencing. Then we used quantitative analysis to validate several differentially expressed genes (DEGs) in testicular tissue and spermatogenic cells. Results Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregulated) between cattleyak and yak. Further analysis revealed that the marker genes and apoptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs associated with mitotic checkpoint, and cell cycle progression were downregulated in cattleyak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal complex assembly, and meiotic progression presented no sign of expression in cattleyak. Even worse, dozens of genes involved in acrosome formation, and flagellar development were dominantly downregulated in cattleyak. Conclusion DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentiation stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Cattleyak are interspecific hybrids between cattle and yak, exhibiting the same prominent adaptability as yak and much higher performances than yak. However, male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted their effective utilization in yak breeding. In past decades, much work has been done to investigate the mechanisms of spermatogenic arrest, but little is known about the differences of the post-transcriptional regulators between cattleyak and yak, which may contribute to the impaired spermatogenesis. MiRNAs, a class of endogenous non-coding small RNA, were revealed to play crucial roles in regulating gene expression at post-transcriptional level. In the present study, we identified 50 differentially expressed (DE) known miRNAs and 11 novel miRNAs by using Illumina HISeq and bioinformatic analysis. A total of 50 putative target sites for the 13 DE known miRNAs and 30 for the 6 DE novel miRNAs were identified, respectively. GO and KEGG analyses were performed to reveal the functions of target genes for DE miRNAs. In addition, RT-qPCR was performed to validate the expression of the DE miRNAs and its targets. The identification of these miRNAs may provide valuable information for a better understanding of spermatogenic arrest in cattleyak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.