This review focuses on the design strategies and advanced functions of pH-responsive wound dressings, and makes a systematic discussion of the challenges and future development trends in this field.
This study aims to evaluate the effects of different electrolyte concentrations on titanium-porcelain bonding strength after microarc oxidation (MAO) treatment. Four MgSiF6 electrolyte concentrations (10 g/L, 20 g/L, 30 g/L, and 40 g/L) were chosen for the MAO bath solutions. According to ISO 9693, the bonding strengths of titanium-porcelain restorations were detected by the three-point bending test. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were applied to evaluate the morphologies and elemental compositions of the MAO coating, titanium-porcelain fracture surfaces, titanium-porcelain interfaces, and oxygen diffusion. The bonding strength of the 20 g/L MgSiF6 group was significantly higher than that of the control group. However, overly high MgSiF6 concentrations had a negative influence on the bonding strength between titanium and porcelain. The results demonstrate that MAO treatment with only appropriate electrolyte concentration can improve the titanium-porcelain bonding strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.