The control of antimicrobial resistance (AMR) seems to have come to a dead end. The major consequences of the use and abuse of antibacterial drugs are the development of resistant strains due to genetic mutability of both pathogenic and nonpathogenic microorganisms. We, herein, report the synthesis, characterization and biological activities of coumarin-thiazole-pyrazole (CTP) molecular hybrids with an effort to explore and overcome the increasing antimicrobial resistance. The compounds were characterized by analyzing their IR, Mass, 1H and13C NMR spectral data and elemental analysis. The in vitro antimicrobial activity of the synthesized compounds was investigated against various pathogenic strains; the results obtained were further explained with the help of DFT and molecular orbital calculations. Compound 1b and 1f displayed good antimicrobial activity and synergistic effects when used with kanamycin and amphotericin B. Furthermore, in vitro cytotoxicity of compounds 1b and 1f were studied against HeLa cells (cervical cancer cell) and Hek-293 cells. The results of molecular docking study were used to better rationalize the action and prediction of the binding modes of these compounds.
Background Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents. Methods The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards. Results, discussion and conclusion The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).
Background: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti urease , anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic, antimigrain agents. Methods: The structure of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive ( B. subtilis ), Gram-negative ( P. aeruginosa and E. coli ) bacterial and fungal ( C. albicans and A. niger ) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti- urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards. Results, discussion and conclusion: The biological screening results reveal that the compounds T 5 (MIC BS, EC = 24.7µM, MIC PA, CA = 12.3 µM) and T 17 (MIC AN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MIC Cipro = 18.1µM, MIC Amo = 17.1µM) and fluconazole (MIC Flu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T 2 (IC 50 = 34.83 µg/ml) and T 3 (IC 50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC 50 = 35.44 µg/ml). Compounds T 3 (IC 50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC 50 = 54.25 µg/ml). The most potent anticancer activity showed by compounds T 2 (IC 50 = 3.84 μM) and T 7 (IC 50 = 3.25 μM) against HCT 116 cell lines as compared to standard 5-FU (IC 50 = 25.36 μM).
Background: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents.Methods: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards.Results, discussion and conclusion: The biological screening results reveal that the compoundsT5 (MICBS,EC= 24.7µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro= 18.1µM, MICAmo = 17.1µM) and fluconazole (MICFlu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml).The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84μM) and T7 (IC50 = 3.25μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36μM).
Background: Triazole is an important heterocyclic moiety that occupied a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, antiurease , anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic, antimigrain agents.Methods: The structure of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU and cisplatin as standards.Results, discussion and conclusion: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1µM, MICAmo = 17.1µM) and fluconazole (MICFlu = 20.4µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity showed by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT 116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.