The microstructures of the activated carbon black microparticles (ACBMPs) generated through both treatments of 20 min ultrasonic and 400 C thermal energy equivalent have been analyzed properly using scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transformed infrared (FTIR) spectroscopy methods. The research was aiming to generate binding or active sites points on the outer surface of the ACBMPs body of which commonly plays an important role in both adsorption and catalytic processes. It was observed that around 150 nm up to 400 nm in average diameter super macro voids with many various turns of nano-scale wells, and around 1.84 angstrom (Å) up to 15.98 Å intraparticle pores were generated. In addition, the parallel planes spacing of the carbonaceous framework sheets, namely d hkl in Miller indexes terminology, of about 4.44 Å up to 2.98 Å constructed the inner particles of the ACBMPs body. A new nomenclature method for the binding or active site shapes identification and classifying them into four categories based on the quadrants terminology, i.e. quadrant one (Q1), two (Q2), three (Q3) and four (Q4) is proposed. Each the quadrants contains four categories of turns types, i.e. sharp, semi sharp, obtuse and non-significant turns depending on the angle of the associated turn in radian angle, θ. Finally, it can be concluded that the combination of ultrasonic and thermal energy treatments in fabricating ACBMPs could generate binding or active site points with unique shapes as a transit terminal for any guest molecules, in this context is methyl red (MR) molecules to enter into the suitable intra-particles pores of the ACBMPs body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.