Background Cardiovascular diseases (CVD) are the primary medical manifestation of metabolic syndrome (MetS). Hypoxia is also involved in the pathogenesis of CVD. Since dietary intervention significantly improved the physiological condition in MetS, the development of functional food to complement conventional medical therapy is essential. Among several standard consumable products, decaffeinated green tea (DGT) and decaffeinated green coffee (DGC) have excellent activity in managing MetS-induced CVD. However, the mechanism underlying their protective activity is poorly understood. This study aimed to understand the cardio-protective activity of DGT, DGC, and a combination of the two (DGT + DGC) in managing MetS-induced CVD in vivo and in silico. Results The MetS condition led to the upregulation of Cardiotrophin-1 (CT-1), Signal Transducer and Activator of Transcription 3 (STAT3), GATA binding protein 4 (GATA4), and B-type Natriuretic Peptide (BNP) beyond the levels of the normal (N) group, while administration of DGT, DGC, and DGT + DGC significantly decreased the expression of those genes compared with the levels of the N group (p < 0.05). The computational analysis showed that the protective role of DGT, DGC, and DGT + DGC might be achieved through AKT1 inhibition by several bioactive components present in DGT and DGC. The analysis also defined the improvement in cardio-protective activity by combining DGT and DGC. Conclusions The administration of DGT, DGC, or DGT + DGC repaired cardiac dysfunction parameters through indirect regulation of the CT-1 signaling axis by inhibiting AKT1 activity.
Background: Insulin resistance has been independently associated with cardiac diseases. A free fatty acid is recently known to induce cardiac insulin resistance due to low-grade inflammation. Therefore, the improvement of free fatty acid levels can also improve cardiac insulin resistance. This study investigated the combination of green tea and decaffeinated-light roasted green coffee extract in improvement of free fatty acid-induced cardiac insulin resistance by improving the adiponectin/FAS pathway. Methods: This study used 25 males Sprague-Dawley rats induced by a high-fat high sucrose diet and injection of low dose streptozotocin to make a metabolic syndrome (MS) rat model and standard chow as healthy control rats. The MS rats were treated with green tea (200 mg/ b. w.), decaffeinated-light roasted green coffee (300 mg/ b. w.), and the combination of both extracts in 9 weeks. Experimental groups in this study were divided into 5 groups: 1) MS (HFHS diet + STZ) group, 2) NC (normal chow) group, 3) GT (green tea extract) group, 4) GC (decaffeinated-light roasted green coffee extract), 5) CM (combination of both extracts) group. Adiponectin and HOMA-IR level was analysed using ELISA, and the gene expression of Adipo-R1, FAS, PI3K, PDK1, Akt, GLUT4 was measured by RT-PCR. Results: The combination of green tea and decaffeinated-light roasted green coffee showed synergistic effects in improving FFA levels. The adiponectin/FAS pathway was attenuated in the CM group. Moreover, the combination also showed improvement in cardiac insulin resistance markers such as IRS1/2, PI3K, PDK1, Akt, and GLUT4. Conclusions: The combination of green tea and decaffeinated-light roasted green coffee extract improved cardiac insulin resistance better than green tea and green coffee extract administration alone by reducing free fatty acids levels through adiponectin/FAS pathway modulation.
Background: Hypertension still becomes a menacing worldwide problem. Ninety percent of people over 55 years will develop hypertension. DASH (Dietary Approaches to Stop Hypertension) diet proven to have substantial blood pressure (BP)-lowering action. Captopril is one of the fi rst-line hypertension treatments in Indonesia since it was accessible and affordable. We conducted SEHAT (Seleksi Gaya Hidup Anti Hipertensi), a more adapted hypertension intervention program based on the DASH diet.Objective: Here we are going to report the results of adding SEHAT in an ongoing regiment of captopril in a hypertension patient in a primary healthcare setting. Method:We conducted SEHAT counseling in the monthly "PROLANIS'' in Sutojayan Primary Health Care. 14 patients with essential hypertension divided into 2 groups: 7 patients accustomed to SEHAT and received 3x25 mg Captopril, while 7 others with only captopril consumption as a control group. We measured the difference value of systolic, diastolic, and Mean Arterial Pressure (MAP) pre and post 4-weeks intervention. Statistical analysis was done using an independent t-test.Result: Based on mmHg measurement, there were a greater reduction of systolic blood pressure (-11,43 vs 1,71; p=0,259), diastolic blood pressure 57; p = 0,833),86; p = 0,517) between SEHAT and control group respectively. Conclusion:SEHAT has the potency to become a promising antihypertension program in primary health care. As there was no signifi cant result, further studies need to be carried out with a greater sample to strengthen its effi cacy.
Background: Metabolic syndrome is a significant risk factor for cardiovascular diseases. Green tea and green coffee extracts, antioxidant and anti-inflammatory agents may participate in metabolic syndrome-induced cardiac fibrosis alleviation. However, the effect of combination of those extracts still needs exploration. Therefore, this study investigated the effect of green tea and decaffeinated light roasted green coffee extracts and their combination in metabolic syndrome-induced cardiac fibrosis rats. Methods: Metabolic syndrome rat model was i1nduced through high-fat high sucrose diets feeding for 8 weeks and injection of low dose streptozotocin at the 2nd week. The metabolic syndrome rats were divided into 4 experimental groups metabolic syndrome rats (MS); metabolic syndrome rats treated with 300 mg/ kg b.w green tea extract (GT); metabolic syndrome rats treated with 200 mg/ kg b.w decaffeinated light roasted green coffee extract (GC); metabolic syndrome rats treated with the combination of the two extracts (CE); and a normal control (NC) group was added. Angiotensin 2 level was analyzed by ELISA method. Gene expression of NF-κB, TNF-α, IL-6, Tgf-β1, Rac-1, and α-sma were analyzed by touchdown polymerase chain reaction methods. Results: Metabolic syndrome rats treated with green tea and decaffeinated light roasted green coffee significantly decreased angiotensin-2 serum level and cardiac inflammation and fibrosis gene expression level (NF-κB, TNF-α, IL-6, Tgf-β1, Rac-1, and α-sma). More significant alleviation was observed in the combination group. Conclusion: This study suggested that combination of green tea and decaffeinated light roasted green coffee extracts showed better improvement in metabolic syndrome-induced cardiac fibrosis rat model compared to that of single extract administration through inflammation inhibition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.