Muscle disuse induces substantial alterations in the highly plastic skeletal muscle tissues, which occur especially in antigravity slow muscles. We differentially screened a muscle cDNA array to identify modifications in gene profile expression induced in slow rat soleus muscle mechanically unloaded by hindlimb suspension as a model for muscle disuse. This study focused on muscle creatine kinase mRNA and protein and glyceraldehyde-3-phosphate dehydrogenase mRNA, which were found to be upregulated in unweighted muscles. These upregulations were analyzed over a 4-wk time course of hindlimb suspension and compared with variations in myosin heavy chain (MHC) isoforms while specifically focusing on type IIx MHC mRNA and protein. The two metabolic marker upregulations clearly preceded IIx MHC contractile protein upregulation. Muscle creatine kinase upregulation was shown to be an excellent, and the earliest, marker of muscle disuse at mRNA and protein levels.
X chromosome-linked muscular dystrophic mdx mouse lacks the sarcolemmal protein dystrophin and represents a genetic homologue of human Duchenne muscular dystrophy (DMD). The present study analysed some aspects of pathological processes such as fibrosis, frequency of centralized nuclei, presence of degenerative or regenerative fibres, expression of utrophin and associated protein complexes, and myosin heavy chain isoforms in three muscles [diaphragm (DIA), gastrocnemius (GTC) and masseter (MAS)] from old male mdx mice. All parameters investigated comparatively in these pathological muscles provided evidence that the MAS mdx muscle presents a slight deterioration pattern in comparison to that of DIA and GTC muscles. Utrophin and associated proteins are present in many cell clusters with continuous membrane labelling in MAS muscle. Respective proportions of myosin heavy chain isoforms, measured by electrophoresis/densitometry, showed only slight change in GTC muscle, significant evolution in DIA muscle but drastic isoform conversions in MAS muscle. These results highlighted the difference in deterioration susceptibility of various muscles to muscular dystrophy. The reason why this occurs in MAS muscles is still obscure and discussed in terms of the comparative developmental origins of these muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.