A singularly perturbed delay parabolic problem of convection-diffusion type with a discontinuous convection coefficient and source term is examined. In the problem, strong interior layers and weak boundary layers are exhibited due to a large delay in the spatial variable and discontinuity of convection coefficient and source. The problem is discretized by a nonstandard finite difference scheme in the spatial variable and for the time derivative, we used the Crank–Nicolson scheme. To enhance the order of convergence of the spatial variable, the Richardson extrapolation technique is applied. The error analysis of the proposed scheme was carried out and proved that the scheme is uniformly convergent of second order in both spatial and temporal variables. Numerical experiments are performed to verify the theoretical estimates.
In this article, a singularly perturbed convection-diffusion problem with a small time lag is examined. Because of the appearance of a small perturbation parameter, a boundary layer is observed in the solution of the problem. A hybrid scheme has been constructed, which is a combination of the cubic spline method in the boundary layer region and the midpoint upwind scheme in the outer layer region on a piecewise Shishkin mesh in the spatial direction. For the discretization of the time derivative, the Crank-Nicolson method is used. Error analysis of the proposed method has been performed. We found that the proposed scheme is second-order convergent. Numerical examples are given, and the numerical results are in agreement with the theoretical results. Comparisons are made, and the results of the proposed scheme give more accurate solutions and a higher rate of convergence as compared to some previous findings available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.