Peptides are important biomolecules which facilitate the understanding of complex biological processes, which in turn could be serendipitous biological targets for future drugs. They are classified as a unique therapeutic niche and will play an important role as fascinating agents in the pharmaceutical landscape. Until now, more than 40 cyclic peptide drugs are currently in the market, and approximately one new cyclopeptide drug enters the market annually on average. Interestingly, the majority of clinically approved cyclic peptides are derived from natural sources, such as peptide antibiotics and human peptide hormones. In this report, the importance of cyclic peptides is discussed, and their role in drug discovery as interesting therapeutic biomolecules will be highlighted. Recently isolated naturally occurring cyclic peptides from microorganisms, sponges, and other sources with a wide range of pharmacological properties are reviewed herein.
BackgroundInfluenza infection remains a major health threat for animals and humans which crucially requires effective antiviral remedies. The usage of herbal medications as readily available alternatives for their compatibility with the body and fewer side effects compared to synthetic chemical treatments has become popular globally. The aim of this study was to investigate and screen in vitro anti-influenza activity of extracts of five South African medicinal plants, namely Tabernaemontana ventricosa, Cussonia spicata, Rapanea melanophloeos, Pittosporum viridiflorum and Clerodendrum glabrum, species which are used traditionally for the treatment of several diseases such as inflammatory and respiratory diseases.MethodsMethanol, ethanol (100% and 30%), acetone, hot and cold water extracts of the powdered plants leaves were obtained by standard methods. The cytotoxicity was determined by the MTT colorimetric assay on MDCK cells. The concentrations below CC50 values were tested for antiviral activity against influenza A virus (IAV) in different combination treatments. The effect of extracts on viral surface glycoproteins and viral titer were tested by HI and HA virological assays, respectively.ResultsBased on the applied methods, the most effective results against IAV were obtained from Rapanea melanophloeos methanol leaf extract (EC50 = 113.3 μg/ml) and Pittosporum viridiflorum methanol, 100% and 30% ethanol and acetone leaf extracts (EC50 values = 3.6, 3.4, 19.2, 82.3 μg/ml, respectively) in all types of combined treatments especially in pre- and post-penetration combined treatments with highly significant effects against viral titer (P ≤ 0.01).ConclusionThe outcomes offer for the first time a scientific basis for the use of extracts of Rapanea melanophloeos and Pittosporum viridiflorum against IAV. It is worth focusing on the isolation and identification of effective active compounds and elucidating the mechanism of action from these species. However, Tabernaemontana ventricosa, Cussonia spicata and Clerodendrum glabrum leaf extracts were ineffective in vitro in this study.Electronic supplementary materialThe online version of this article (10.1186/s12906-018-2184-y) contains supplementary material, which is available to authorized users.
The emergence of viral pneumonia caused by a novel coronavirus (CoV), known as the 2019 novel coronavirus (2019-nCoV), resulted in a contagious acute respiratory infectious disease in December 2019 in Wuhan, Hubei Province, China. Its alarmingly quick transmission to many countries across the world and a considerable percentage of morbidity and mortality made the World Health Organization recognize it as a pandemic on March 11, 2020. The perceived risk of infection has led many research groups to study COVID-19 from different aspects. In this literature review, the phylogenetics and taxonomy of COVID-19 coronavirus, epidemiology, and respiratory viruses similar to COVID-19 and their mode of action are documented in an approach to understand the behavior of the current virus. Moreover, we suggest targeting the receptors of SARS-CoV and SARS-CoV-2 such as ACE2 and other proteins including 3CLpro and PLpro for improving antiviral activity and immune response against COVID-19 disease. Additionally, since phytochemicals play an essential role in complementary therapies for viral infections, we summarized different bioactive natural products against the mentioned respiratory viruses with a focus on influenza A, SARS-CoV, MERS, and COVID-19.Based on current literature, 130 compounds have antiviral potential, and of these, 94 metabolites demonstrated bioactivity against coronaviruses. Interestingly, these are classified in different groups of natural products, including alkaloids, flavonoids, terpenoids, and others. Most of these compounds comprise flavonoid skeletons. Based on our survey, xanthoangelol E (88), isolated from Angelica keiskei (Miq.) Koidz showed inhibitory activity against SARS-CoV PLpro with the best IC50 value of 1.2 μM. Additionally, hispidulin (3), quercetin (6), rutin (8), saikosaponin D (36), glycyrrhizin (47), and hesperetin (55) had remarkable antiviral potential against different viral infections. Among these compounds, quercetin (6) exhibited antiviral activities against influenza A, SARS-CoV, and COVID-19 and this seems to be a highly promising compound. In addition, our report discusses the obstacles and future perspectives to highlight the importance of developing screening programs to investigate potential natural medicines against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.