Robots at present are involved in many parts of life, especially mobile robots, which are two parts, ground robots and flying robots, and the best example of a flying robot is the drone. Path planning is a fundamental part of UAVs because the drone follows the path that leads it to goal with obstacle avoidance. Therefore, this paper proposes a hybrid algorithm (grey wolf optimizationintelligent bug algorithm (GWO-IBA)) to determine the best, shortest and without obstacles path. The hybrid algorithm was implemented and tested in the MATLAB program on the Tri-copter model, and it gave different paths in different environments. The paths obtained were characterized by being free of obstacles and the shortest paths available to reach the target.
The study aims to examine the effects of artificial intelligence (AI) on the consistency and analysis of financial statements in hotels in ASEZA, Jordan. This research is an exploratory, empirical study, which uses the methodology of data collection and interpretation to draw conclusions. The researchers used the arithmetic mean, standard deviation, T-test and ANOVA test to calculate the degree of significance of the study questions. The findings of a basic linear regression study of the impact of AI implemented in Jordanian hotels on the integration of accounting information systems and the association between AI and the integration of accounting information systems (R = 59.6%) also indicate that the fixed limit value amounted to (2.060) and the value of (Beta) for T-test
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our cameras system to capture the images and upload them to the Amazon Simple Storage Service (AWS S3) cloud. Then two detectors were running, Haar cascade and multitask cascaded convolutional neural networks (MTCNN), at the Amazon Elastic Compute (AWS EC2) cloud, after that the output results of these two detectors are compared using accuracy and execution time. Then the classified non-permission images are uploaded to the AWS S3 cloud. The validation accuracy of the offline augmentation face detection classification model reached 98.81%, and the loss and mean square error were decreased to 0.0176 and 0.0064, respectively. The execution time of all AWS cloud systems for one image when using Haar cascade and MTCNN detectors reached three and seven seconds, respectively.
<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become conflicting and divergent then leading EE to decrease so gradually while SE continues increasing logarithmically. The results achieved that for a single-cellular massive MU-MIMO downlink model, our PIMP scheme is the appropriate scenario to achieve higher precoding performance system. Furthermore, both maximum ratio transmission (MRT) and PIMP are suitable for performance improvement in massive MIMO results of EE and SE. So, the main contribution comes with this work that highest EE and SE are belong to use a PIMP which performs better appreciably than MRT at bigger ratio of number of antennas to the number of the users. </span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.