Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors’ clinical management. This review describes nanocarrier’s importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great threat to public health, being a causative pathogen of a deadly coronavirus disease (COVID-19). It has spread to more than 200 countries and infected millions of individuals globally. Although SARS-CoV-2 has structural/genomic similarities with the previously reported SARS-CoV and MERS-CoV, the specific mutations in its genome make it a novel virus. Available therapeutic strategies failed to control this virus. Despite strict standard operating procedures (SOPs), SARS-CoV-2 has spread globally and it is mutating gradually as well. Diligent efforts, special care, and awareness are needed to reduce transmission among susceptible masses particularly elder people, children, and health care workers. In this review, we highlighted the basic genome organization and structure of SARS-CoV-2. Its transmission dynamics, symptoms, and associated risk factors are discussed. This review also presents the latest mutations identified in its genome, the potential therapeutic options being used, and a brief explanation of vaccine development efforts against COVID-19. The effort will not only help readers to understand the deadly SARS-CoV-2 virus but also provide updated information to researchers for their research work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.