We have developed a polymer film based plasmonic device whose optical properties are tuned for measuring biological samples. The device has a circular nanohole array structure fabricated with a nanoimprint technique using a UV curable polymer, and then gold thin film is deposited by electron beam deposition. Therefore, the device is mass-producible, which is also very important for bioaffinity sensors. First the gold film thickness and hole depth were optimized to obtain the maximum dip shift for the reflection spectra. The dip shift is equivalent to the sensitivity to refractive index changes at the plasmonic device surface. We also calculated the variation in reflection spectra by changing the above conditions using the finite-difference time domain method, and we obtained agreement between the theoretical and experimental curves. The nanohole periodicity was adjusted from 400 to 900 nm to make it possible to perform measurements in the visible wavelength region to measure the aqueous samples with less optical absorption. The tuned bottom filled gold nanohole array was incorporated in a microfluidic device covered with a PDMS based microchannel that was 2 mm wide and 20 μm deep. As a proof of concept, the device was used to detect TNF-α by employing a direct immunochemical reaction on the plasmonic array, and a detection limit of 21 ng mL(-1) was obtained by amplification with colloidal gold labeling instead of enzymatic amplification.
We investigate bound states in the continuum (BICs) in a planar dielectric waveguide structure consisting of a gold grating on a dielectric layer with a back layer of metal. In this structure, Friedrich-Wintgen (FW) BICs caused by the destructive interference between the radiations from two waveguide modes appear near the anti-crossing point of the dispersion curves. In this study, it is revealed that the branch at which the BIC appears changes according to the polarization of the modes. Based on a temporal coupled mode theory, it is shown that the BIC branch is determined by the sign of the product of the coupling coefficients between the two waveguide modes and external radiation, which is consistent with FW theory. The signs of the coupling coefficients are estimated by the waveguidemode decomposition of the numerically obtained electric fields and are confirmed to vary depending on the polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.