A one- and two-photon activated photoremovable protecting group (PRPG) was designed based on a carbazole fused o-hydroxycinnamate platform for the dual (same or different) release of alcohols. The mechanism for the dual release proceeds through a stepwise pathway and also monitors the first and second photorelease in real time by an increase in fluorescence intensity and color change, respectively. Further, its application in staining live neurons and ex vivo imaging with two-photon excitation is shown.
Early sensory experience during the critical period of development is known to alter sensory cortical response properties and organization. We find that the earliest sound driven activity in the mouse auditory cortex (ACX) can be detected before earcanal opening (ECO). How auditory experience at these ages may influence auditory cortical development is unknown. Particularly, subplate neurons (SPNs), involved in sensory thalamocortical maturation, in the auditory cortex, are also found to be driven by sounds at ages before ECO in mice. We find that SPNs are selective to low probability deviant sounds in auditory streams before ECO, more so than thalamo-recipient, layer 4 (L4) neurons and not after ECO. We hypothesize that SPNs with their deviant selectivity can direct development of L4 responses before ECO. Exposing mice before ECO with a rarely occurring tone in a stream of another tone occurring frequently leads to strengthening of cortical representation of the rare tone, but not the frequent tone in the adult. Control exposure experiments with only a frequently occurring tone and also in other developmental age windows corroborate the importance of low probability sounds in auditory development. With a computational network model of known thalamic inputs to SPNs and L4 we explain the observed developmental plasticity. An information theoretic analysis with sparse coding assumptions also predicts the observations. Thus, salient low probability sounds in the earliest auditory environment causes long term changes in the auditory cortex.
Auditory cortex (ACX) neurons are sensitive to spectro-temporal sound patterns and violations in patterns induced by rare stimuli embedded within streams of sounds. We investigate the auditory cortical representation of repeated presentations of sequences of sounds with standard stimuli(common) with an embedded deviant (rare) stimulus in two conditions-Periodic (Fixed deviant position) or Random (Random deviant position), using extracellular single-unit and 2-photon Ca+2 imaging recordings in Layer 2/3 neurons of the mouse ACX. In the population average, responses increased over repetitions in the Random-condition and were suppressed or did not change in the Periodic-condition, showing irregularity preference. A subset of neurons also showed the opposite behavior, indicating regularity preference. Pairwise noise correlations were higher in Random-condition over Periodic-condition, suggesting the role of recurrent connections. 2-photon Ca+2 imaging of excitatory (EX) and parvalbumin-positive (PV) and somatostatin-positive (SOM) inhibitory neurons, showed different categories of adaptation or change in response over repetitions (categorized by the sign of the slope of change) as observed with single units. However, the examination of functional connectivity between pairs of neurons of different categories showed that EX-PV connections behaved opposite to the EX-EX and EX-SOM pairs that show more functional connections outside category in Random-condition than Periodic-condition. Finally considering Regularity preference, Irregularity preference and no preference categories, showed that EX-EX and EX-SOM connections to be in largely separate functional subnetworks with the different preferences, while EX-PV connections were more spread. Thus separate subnetworks could underlie the coding of periodic and random sound sequences.
Sensory experience during a critical period alters sensory cortical responses and organization. We find that the earliest sound-driven activity in the mouse auditory cortex (ACX) starts before ear-canal opening (ECO). The effects of auditory experience before ECO on ACX development are unknown. We find that in mouse ACX subplate neurons (SPNs), crucial in thalamocortical maturation, respond to sounds before ECO showing oddball selectivity. Before ECO, SPNs are more selective to oddball sounds in auditory streams than thalamo-recipient layer 4 (L4) neurons and not after ECO. We hypothesize that SPN's oddball selectivity can direct the development of L4 responses before ECO. Exposing mice, of either sex, before ECO to a rarely occurring tone in a stream of another tone occurring frequently leads to strengthening the adult cortical representation of the rare tone, but not that of the frequent tone. Results of control exposure experiments at multiple developmental windows that also use only a single tone corroborate the observations. We further explain the strengthening of deviant inputs before ECO and not after ECO using a binary network model mimicking the hierarchical structure of subplate and L4 neurons and response properties derived from our data, with synapses following Hebbian spike time-dependent plasticity learning rule. Information-theoretic analysis with sparse coding assumptions also predicts the observations. Thus, relatively salient low probability sounds in the earliest auditory environment cause long-term changes in the ACX.
Auditory cortex (ACX) neurons are sensitive to spectro-temporal sound patterns and violations in patterns induced by rare stimuli embedded within streams of sounds. We investigate the auditory cortical representation of repeated presentations of sequences of sounds with standard stimuli (common) with an embedded deviant (rare) stimulus in two conditions, Periodic (Fixed deviant position) or Random (Random deviant position). We used extracellular single-unit and two-photon Ca2+imaging recordings in layer 2/3 neurons of the mouse (Mus musculus) ACX of either sex. Population single-unit average responses increased over repetitions in the Random condition and were suppressed or did not change in the Periodic condition, showing general irregularity preference. A subset of neurons showed the opposite behavior, indicating regularity preference. Furthermore, pairwise noise correlations were higher in the Random condition than in the Periodic condition, suggesting a role of recurrent connections in the observed differential adaptation. Functional two-photon Ca2+imaging showed that excitatory (EX), and inhibitory (IN) neurons [parvalbumin-positive (PV) and somatostatin-positive (SOM)] also had different categories of long-term adaptation as observed with single-units. However, examination of functional connectivity between pairs of neurons of different categories showed that EX-PV connected pairs behaved opposite to the EX-EX and EX-SOM pairs, with more connections outside category in Random condition than Periodic condition. Finally, considering Regularity, Irregularity, and no preference of connected pairs of neurons showed that EX-EX and EX-SOM pairs were in largely separate functional subnetworks with different preferences, not EX-PV pairs. Thus, separate subnetworks underlie coding of periodic and random sound sequences.SIGNIFICANCE STATEMENTStudying how the auditory cortex (ACX) neurons respond to streams of sound sequences help us understand the importance of changes in dynamic acoustic noisy scenes around us. Humans and animals are sensitive to regularity and its violations in sound sequences. Psychophysical tasks in humans show that the auditory brain differentially responds to Periodic and Random structures, independent of the listener's attentional states. Here, we show that mouse ACX L2/3 neurons detect changes and respond differently to patterns over long-time scales. The differential functional connectivity profile obtained in response to two different sound contexts suggests the vital role of recurrent connections in the auditory cortical network. Furthermore, the excitatory-inhibitory neuronal interactions can contribute to detecting the changing sound patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.