The role of IL-7 in the stromal cell-dependent B cell development was investigated using two stromal cell clones, ST2 and PA6; the former supports B lymphopoiesis while the latter can not. We demonstrate here that: (a) the ability of the stromal cell clone to produce IL-7 correlates well with the stromal cell activity to support B lymphopoiesis; (b) IL-7 production by ST2 is inducible rather than constitutive; (c) the IL-7-dependent B cell itself is a potent inducer of IL-7 production by ST2; (d) addition of rIL-7 to the PA6 layer renders this in vitro environment B lymphopoietic; and (e) the differentiation from early B progenitor to pre-B cell requires both IL-7 and other stromal cell molecule(s) yet to be identified.
Neuronal response properties were compared among different layers of the urethan-anesthetized rat vibrissa cortex. Measurements were made of the receptive-field (RF) size, the degree of directional selectivity, the latency of driving, the velocity threshold, and the tuning-curve slope. The RF size was defined by the number of whiskers that, when deflected individually, activated a neurons. For the center whisker of the RF (usually whisker C3), the response to deflection in the most preferred direction was compared with that in the opposite direction to classify the neuron as either strongly directional, weakly directional, or nondirectional. For the most preferred direction of the center whisker, the minimum velocity of deflection required to drive the unit was defined as the velocity threshold, the latency of driven response to a standard supramaximal velocity was measured, and finally, using exponential ramp-and-hold deflection, the threshold amplitude was determined at different values of time constant to construct a tuning-curve slope. Cortical layer IV neurons, as a whole, have the lowest threshold velocity. Layer Vb neurons stand on the opposite extreme in having the highest mean velocity threshold value. Although this difference is consistent with the generally held view that the "barrels" in layer IV represent the input stage of cortical information processing, the lack of laminar differences in latency and RF size support the idea that neurons of other cortical layers also receive direct thalamocortical inputs. The population of cortical neurons thus appears quite homogeneous across different layers as far as the results of examination with short-pulsed stimulation are concerned. Correlation of pairs of parameters (RF, directionality, velocity threshold, and latency) was tested in the two layers (layer IV and layer Vb). The latency and velocity threshold are highly correlated within both layers. Also, most of correlation coefficients of the corresponding pairs of the two layers are similar. However, the use of exponential ramp-and-hold deflection of whiskers revealed a difference in tuning-curve slope between layer IV and layer Vb (also layers II-III); layer IV neurons show flatter tuning-curve slopes (more oriented for detection of the amplitude component of whisker deflection) than neurons of layer Vb and layers II-III, which are more oriented for velocity detection. During the hold phase of whisker deflection, layer IV neurons tend to show sustained discharges, whereas layer Vb (also layers II-III) neurons mainly exhibit transient responses.(ABSTRACT TRUNCATED AT 400 WORDS)
SUMMARY1. Using diaminobenzidine (DAB) as a chromagen, horseradish peroxidaseinjected neurones and cytochrome oxidase-stained barrels were visualized simultaneously in the rat vibrissa cortex. Neurones were initially tested during extracellular recording for responses to whisker deflections. This was followed by intracellular injection of the soma with horseradish peroxidase (HRP) and histological processing to visualize the HRP-stained neurone in an incubation solution which contained, in addition to DAB, cytochrome C for cytochrome oxidase (CO) reaction of the barrels.2. Recording and intracellular staining were made in layer 5b under urethane anaesthesia. CO-stained barrels were observed in layer 4. Physiologically and morphologically characterized neurones were mostly large pyramidal neurones that responded to more than one whisker and displayed transient-type responses.3. In tangential sections, the apical dendrite of the HRP-filled neurone was followed from the soma level upward as it ascended through the barrelfield in layer 4. The cross-section of the apical dendrite was found in the periphery of the COstained barrel. Using the apical dendrite as a guide, the basal dendritic field of the layer 5b pyramidal neurone was aligned on the pattern of layer 4 barrels. The soma was seen to project basal dendrites in all directions, involving one or two neighbouring barrels/columns.4. In sixteen neurones examined in tangential sections, a complete spatial tuning map constructed by measuring sensitivity of the neurone to different whiskers could be compared to the basal dendritic field in relation to the pattern of overlying layer 4 barrels. The mean receptive field size in terms of the number of effective whiskers was 5 8 whereas the mean dendritic field size in terms of the number of barrels/columns involved was 2-2. In addition to the well-documented role of intracortical connectivity in elaboration of multi-whisker receptor fields in the cortical neurones, the role played by direct inputs from multi-whisker thalamic ventrobasal neurones was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.