Interleukin 6 (IL-6), being a major component of homeostasis, immunomodulation, and hematopoiesis, manifests multiple pathological conditions when upregulated in response to viral, microbial, carcinogenic, or autoimmune stimuli. High fidelity immunosensors offer real-time monitoring of IL-6 and facilitate early prognosis of life-threatening diseases. Different approaches to augment robustness and enhance overall performance of biosensors have been demonstrated over the past few years. Electrochemical- and fluorescence-based detection methods with integrated electronics have been subjects of intensive research due to their ability to offer a better signal-to-noise ratio, high specificity, ultra-sensitivity, and wide dynamic range. In this review, the pleiotropic role of IL-6 and its clinical significance is discussed in detail, followed by detection schemes devised so far for their quantitative analysis. A critical review on underlying signal amplification strategies and performance of electrochemical and optical biosensors is presented. In conclusion, we discuss the reliability and feasibility of the proposed detection technologies for commercial applications.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -Real-time monitoring of wound or injured tissues is critical for speedy recovery, and the onset of a cascade of biochemical reactions provides potential biomarkers that facilitate the process of wound monitoring, e.g. pH, temperature, moisture level, bacterial load, cytokines, interleukins, etc. Among all the biomarkers, pH has been known to have a profound impact on the wound healing process, and is used to determine the incidence of bacterial infection of the wound (persistently elevated alkaline pH), proteolytic activity at the site of injury, take rate in skin grafting, wound healing stage and preparation for wound debridement. Design/methodology/approach -This review highlights the significance of pH in determination of clinical parameters and for selection of an appropriate treatment regime, and it presents an in-depth analysis of the designs and fabrication methods that use integrated pH sensors, which have been reported to date for the real-time monitoring of wound healing. Findings -For an expedited wound healing process, the significance of pH mandated the need of an integrated sensor system that would facilitate real-time monitoring of healing wounds and obviate the requirement of redressing or complicated testing procedures, which are both labor-intensive and painful for the patient. The review also discussed different types of sensor systems which were developed using hydrogel as a pH-responsive system coupled with voltammetry, potentiometry, impedimetric and flex-circuit inductive transducer systems. All of the mentioned devices have considerable potential for clinical applications, and there is need of in vivo testing to validate their efficiency and sensitivity under practical scenarios. Originality/value -This manuscript is an original review of literature, and permission has been granted to use the figures from previously published papers.
Magneto-photonic crystals/MPCs are promising candidates for devising high-fidelity embedded biosensor systems which offer facile & real time detection of diagnostic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.