Mesenchymal stem cells (MSCs) have been widely investigated to repair injured cartilage tissues for the treatment of arthritis. Despite these great efforts, the difficulty in the spatiotemporal control of delivered cells has limited the further clinical development with rapid clearance. Here, we developed injectable hyaluronate (HA) hydrogels to encapsulate MSCs for controlled cartilage tissue regeneration based on the supramolecular chemistry between βcyclodextrin-modified HA (HA-CD) and adamantane (Ad)-modified HA (HA-Ad). Supramolecular HA hydrogels exhibited remarkable mechanical characteristics such as shear thinning and self-healing with a high cell viability of encapsulated MSCs. The spatiotemporally controlled delivery of MSCs from the supramolecular HA hydrogels resulted in the statistically significant chondrogenic differentiation and extracellular matrix deposition in vitro and in vivo. We could confirm the notable cartilage tissue regeneration in cartilage defect model rats after treatment with supramolecular HA hydrogels encapsulating MSCs for 28 days. Taken together, supramolecular HA hydrogels would be successfully harnessed as an injectable delivery system of MSCs for cartilage tissue regeneration and other tissue engineering applications.
We developed supramolecular hyaluronate (HA) hydrogels to encapsulate genetically engineered mesenchymal stem cells (MSCs) for the treatment of limb ischemia. In vivo angiogenic factors could be produced stably by the bioengineered MSCs (BMSCs) within the supramolecular hydrogels showing effective vascular repair and enhanced blood perfusion.Clinical limb ischemia (CLI) is the severe manifestation of peripheral arterial disease, which is one of the most common diseases in the population over 70 years old, up to 20%.
Skin tissue is regenerated by the combinational function of skin cells, extracellular matrix (ECM), and bioactive molecules. As an artificial ECM, supramolecular hydrogels exhibited outstanding capability to mimic the physical properties of ECM. However, the lack of biochemical function in supramolecular hydrogels has limited further tissue engineering applications. Here, we developed self-assembling supramolecular drug delivery hydrogels to mimic the skin tissue regeneration process. The supramolecular hydrogels were prepared to encapsulate fibroblasts by the host−guest interaction of cyclodextrin-modified gelatin (GE-CD) and adamantane-modified hyaluronate (Ad-HA) in conjugation with human growth hormone (hGH) for accelerated skin tissue regeneration. In vitro, GE-CD/Ad-HA-hGH hydrogels showed highly facilitated cell growth by the controlled hGH delivery. After a subcutaneous injection into the back of mice, IVIS imaging of bioengineered fibroblasts to express red fluorescence protein (RFP) revealed prolonged cell survival and proliferation in the supramolecular hydrogels for more than 21 days. We could also observe the improved skin tissue regeneration by the facilitated fibroblast proliferation with angiogenesis. Taken together, we could confirm the feasibility of biomimetic supramolecular drug delivery GE-CD/Ad-HA-hGH hydrogels for various tissue engineering applications.
The
design of advanced nanobiomaterials to improve analytical accuracy
and therapeutic efficacy has become an important prerequisite for
the development of innovative nanomedicines. Recently, phospholipid
nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine
(MPC) have attracted great attention with remarkable characteristics
such as resistance to nonspecific protein adsorption and cell adhesion
for various biomedical applications. Despite many recent reports,
there is a lack of comprehensive review on the phospholipid nanobiomaterials
from synthesis to diagnostic and therapeutic applications. Here, we
review the synthesis and characterization of phospholipid nanobiomaterials
focusing on MPC polymers and highlight their attractive potentials
for applications in micro/nanofabricated fluidic devices, biosensors,
lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages
for early diagnosis and even treatment, and artificial extracellular
matrix scaffolds for cellular engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.