The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NOx emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load.
Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from ψ:1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio (Ψ) increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NOx emissions with a slight penalty in BTE.
Lean combustion in an internal combustion engine is a promising strategy to increase thermal efficiency by leveraging a more favorable specific heat ratio of the fresh mixture and simultaneously suppressing the heat losses to the cylinder wall. However, unstable ignition events and slow flame propagation at fuel-lean condition lead to high cycle-to-cycle variability and hence limit the high-efficiency engine operating range. Pre-chamber ignition is considered an effective concept to extend the lean operating limit, by providing spatially distributed ignition with multiple turbulent flame-jets and enabling faster combustion rate compared to the conventional spark ignition approach. From a numerical modeling perspective, to date, still the science base and available simulation tools are inadequate for understanding and predicting the combustion processes in pre-chamber ignited engines. In this paper, conceptually different RANS combustion models widely adopted in the engine modeling community were used to simulate the ignition and combustion processes in a medium-duty natural gas engine with a pre-chamber spark-ignition system. A flamelet-based turbulent combustion model, i.e., G-equation, and a multi-zone well-stirred reactor model were employed for the multi-dimensional study. Simulation results were compared with experimental data in terms of in-cylinder pressure and heat release rate. Finally, the analysis of the performance of the two models is carried out to highlight the strengths and limitations of the two formulations respectively.
Pre-chamber spark-ignition (PCSI) is a leading advanced ignition concept for internal combustion engines with the potential to enable diesel-like efficiency in medium-duty/heavy-duty (MD/HD) natural gas (NG) engines. By leveraging distributed ignition sources from multiple turbulent jets, the PCSI technology can deliver extremely short combustion duration in ultra-lean mixtures and significantly improve the engine thermal efficiency. However, in the automotive industry there is a lack of adequate science base and predictive simulation tools required for commercial development of PCSI engines. In this study, Reynolds-Average Navier-Stokes simulations are carried out to describe the combustion process in lean-burn NG engines, focusing on the combustion modeling approach. Two combustion models, multi-zone well-stirred reactor (MZ-WSR) and G-equation, are used to simulate the combustion process in an MD NG engine equipped with a fueled-PCSI system for four operating conditions close to the lean operating limit. A skeletal chemical mechanism and a laminar flame speed tabulation are used to compute the combustion accurately. Simulation results are compared with experimental data regarding measured cylinder pressure, heat release rate, and combustion duration. By dividing the PCSI combustion process into four distinct phases, the difference between the two models’ results for each phase is analyzed in detail. The MZ-WSR model overestimates the combustion duration for early flame kernel growth in the pre-chamber due to the lack of a specific formulation to take turbulence-chemistry interaction into account. Despite the prolonged combustion duration and low pressure built-up inside the pre-chamber, the model matches the combustion rate in the main-chamber. In contrast, the G-equation model delivers good agreements for the pre-chamber combustion and turbulent jet-driven combustion processes. However, the model starts to underestimate the combustion rate in the main-chamber, especially under ultra-lean mixture conditions. Finally, improvements are needed for both models to simulate the later combustion stage that occurred in the near-wall regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.