Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics.
methods suffer from several limitations. Even though many efforts focused on the synthesis of BP derivatives have been reported, [10] research into the synthesis, properties, and applications of BP derivatives is still at an early stage, and a lot remains to be investigated.Although this research field is only a few years old, BP derivatives have already been utilized in a wide range of device applications such as transistors, batteries, supercapacitors, and solar cells. [20][21][22][23] These recent advancements highlight the potential importance of these exciting materials. In particular, based on recent theoretical and experimental studies, BP derivatives have shown great promise in enhancing the performance and lowering the cost of emerging photovoltaics (PVs). Considering the rapid advances of this cutting-edge research area, highlighting these discoveries and findings of the past few years is of great importance.Herein, we focus on providing a concise overview and timely update on the synthesis of BP derivatives and their recent applications in emerging solar cells including organic PV (OPV), dye-sensitized solar cells (DSSCs), heterojunction solar cells (HJSCs), and perovskite solar cells (PSCs).
1D semiconducting oxides are unique structures that have been widely used for photovoltaic (PV) devices due to their capability to provide a direct pathway for charge transport. In addition, carbon nanotubes (CNTs) have played multifunctional roles in a range of PV cells because of their fascinating properties. Herein, the influence of CNTs on the PV performance of 1D titanium dioxide nanofiber (TiO2 NF) photoelectrode perovskite solar cells (PSCs) is systematically explored. Among the different types of CNTs, single‐walled CNTs (SWCNTs) incorporated in the TiO2 NF photoelectrode PSCs show a significant enhancement (≈40%) in the power conversion efficiency (PCE) as compared to control cells. SWCNTs incorporated in TiO2 NFs provide a fast electron transfer within the photoelectrode, resulting in an increase in the short‐circuit current (J
sc) value. On the basis of our theoretical calculations, the improved open‐circuit voltage (V
oc) of the cells can be attributed to a shift in energy level of the photoelectrodes after the introduction of SWCNTs. Furthermore, it is found that the incorporation of SWCNTs into TiO2 NFs reduces the hysteresis effect and improves the stability of the PSC devices. In this study, the best performing PSC device constructed with SWCNT structures achieves a PCE of 14.03%.
High‐quality, few‐layer black‐phosphorus (BP) flakes are prepared in a common organic solvent with very short processing times using microwave‐assisted liquid‐phase exfoliation. A comprehensive range of analysis, combined with density‐functional theory calculations, confirms that the product prepared using the microwave technique is few‐layer BP with small‐ and large‐area flakes. The suspended exfoliated BP sheets show excellent stability, while samples dispersed onto silicon from the suspensions exhibit low oxidation levels after several days in ambient conditions. This straightforward synthesis method is facile, efficient, and extremely fast, and does not involve use of any surfactant or ultrasonication steps and will facilitate future development of phosphorene research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.