D-galactosamine (D-GalN) is a well-known hepatotoxic agent that causes liver injury. Conversely, hepatic macrophages play a crucial role in maintaining liver tissue integrity. Macrophage functions were investigated in hepatic lesions induced by a single intraperitoneal injection of D-GalN (800 mg/kg body weight [BW]) in 6-week-old F344 rats. Blood and liver samples were examined at 8 hr and on 1, 2, 3, and 5 days postsingle injection (PSI). Hepatic lesions consisting of degeneration/sporadic foci of coagulation necrosis, inflammatory cell reaction, and reparative fibrosis were seen on PSI days 1 and 2, reflected by significantly increased serum levels of aspartate transaminase and alanine transaminase and upregulation of CD68 M1 (tumor necrosis factor-a, interleukin [IL]-6, and interferon-g) and CD163 M2 (transforming growth factor-b1, IL-10, monocyte chemoattractant protein-1, and IL-4) macrophage-related factors. Double immunofluorescence staining on PSI day 2 demonstrated that 82% of hepatic macrophages expressed of CD163/CD68 simultaneously; 65-75% of MHC class II macrophages showed co-expression of CD163 or CD68 and 95% CD204-expressing macrophages reacted to CD163 or CD68. These findings showed that both M1-and M2-macrophages contributed to the development of hepatic lesions induced by D-GalN and provided information about macrophage activation, indicating the importance of analysis of macrophage phenotypes for hepatotoxicity based on M1/M2-polarization.
To investigate the significance of the appearance of hepatic macrophages and expression of inflammatory factors in normal and macrophage-depleted livers, hepatic macrophages were depleted with liposome (Lipo)-encapsulated clodronate (CLD; 50 mg/kg, i.v.) followed by lipopolysaccharide (LPS) administration (0.1 mg/kg, i.p.) in F344 rats (CLD + LPS). Vehicle control rats (Lipo + LPS) received empty-Lipo before LPS. The low dose of LPS did not result in microscopic changes in the liver in either treatment group but did modulate M1 and M2 macrophage activity in Lipo + LPS rats without altering repopulating hepatic macrophages in CLD + LPS rats. LPS treatment in Lipo + LPS rats dramatically increased the M1 (IL-1β, IL-6, TNF-α, and MCP-1) but not M2 macrophage-related factors (IL-4 and CSF-1) compared to CLD + LPS rats. In the CLD + LPS rats, the M2 macrophage-related factors IL-4 and CSF-1 were elevated. In conclusion, low-dose LPS activated hepatic macrophages in rat livers without causing liver injury or stimulating repopulating hepatic macrophages. These data suggest that LPS may alter the liver microenvironment by modulating M1 or M2 macrophage-related inflammatory mediators and macrophage-based hepatotoxicity.
Liposomes have been used as a vehicle for encapsulating chemicals or toxins in toxicological studies. We investigated the transient effects of empty liposomes on hepatic macrophages by applying a single intravenous injection at a dose of 10 ml/kg body weight in 6-week-old male F344 rats. One day after injection, the numbers of hepatic macrophages reacting to CD163, CD68, Iba-1, MHC class II, Gal-3 and CD204 were significantly increased in liposome-treated rats. CD163+ Kupffer cells and CD68+ macrophages with increased phagocytic activity in hepatic lobules were most sensitive. The histological architecture of the liver was not changed following liposome injection; however, hepatocytes showed increased proliferating activity, demonstrable with proliferation marker immunostaining and by an increase in gene profiles related to the cell cycle. In the liposome-treated rats, interestingly, AST and ALT values were significantly decreased, and MCP-1, IL-1β and TGF-β1 mRNAs were significantly increased. Collectively, the present study found that hepatic macrophages activated by liposomes can influence liver homeostasis. This information would be useful for background studies on liposomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.