<p><span>The field of image compression became a mandatory tool to face the increasing and advancing production of medical images, besides the inevitable need for smaller size of medical images in telemedicine systems. In spite of its simplicity, run-length encoding (RLE) technique is a considerably effective and practical tool in the field of lossless image compression. Such that, it is widely recommended for 2D space that utilizes common searching techniques like linear and zigzag. This paper adopts a new algorithm taking advantage of the potential simplicity of the run-length algorithm to contribute a volumetric RLE approach for binary medical data in the 3D form. The proposed volumetric-RLE (VRLE) algorithm differs from the 2D RLE approach utilizing correlations of intra-slice only, which is used for compressing binary medical data utilizing voxel-correlations of inter-slice. Furthermore, several forms of scanning are used to extending proposed technique like Hilbert and Perimeter, which determines the best possible procedure of scanning suitable for data morphology considering the segmented organ. This work employs proposed algorithm on four image datasets to get as sufficient as possible evaluation. Experimental results and benchmarking illustrate that the performance of the proposed technique surpasses other state-of-the-art techniques with 1:30 enhancement on average.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.