The purpose of the present study was to measure six vitamin D metabolites and to find the association between vitamin D deficiency and coronary artery diseases in diabetes (T2DM_CAD). Four groups [control (n = 50), type 2 diabetes (T2DM, n = 71), coronary artery diseases (CAD, n = 28), T2DM_CAD (n = 38)] of total 187 subjects were included in the study. Six vitamin D metabolites (D2, D3, 25(OH)D2, 25(OH)D3, 1,25(OH)2D2, 1,25(OH)2D3), total 25(OH)D and total 1,25(OH)2D were measured by UPLC/APCI/HRMS method in these subjects. Although all the vitamin D metabolites were significantly decreased in T2DM_CAD as compared to both control and T2DM subjects (p < 0.05), only two metabolites i.e., 25(OH)D3 and total 25(OH)D were significantly (p < 0.05) decreased in the T2DM subjects as compared with the control subjects (p < 0.05). Vitamin D3, 1,25(OH)2D2, 25(OH)D, and 1,25(OH)2D levels were significantly decreased in T2DM_CAD subjects as compared with CAD subjects (p < 0.05). Further, multiple logistic regression analysis revealed that total 25(OH)D and total 1,25(OH)2D can be used to predict T2DM (OR 0.82.95% CI 0.68–0.99; p = 0.0208) and T2DM with CAD (OR 0.460, 95% CI 0.242–0.874; p = 0.0177), respectively. Our data concludes that lower concentration of 1,25(OH)2D is associated with type 2 diabetes coexisting with coronary artery diseases in South Indian subjects.