[1] To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate clays, kaolinite, illite, and montmorillonite, and non-clay minerals, quartz, calcite, gypsum, and hematite, as well as Arizona road dust. In each case the aerosol size distribution was simultaneously monitored with an aerodynamic particle sizer. Particle diameters in this study fall in the accumulation mode size range characteristic of long-range transport aerosols. Our results show significant discrepancies between the experimental and Mie theory phase functions. The model shortcomings are due to particle shape effects for these non-spherical mineral dust particles. We find intriguing differences in the scattering between the silicate clay and non-clay components of mineral dust aerosol in this size range. For the non-clay minerals the most significant errors are found at large scattering angles where Mie theory substantially overestimates the backscattering signal. For the silicate clay minerals, there is more variability in the comparison to Mie theory. These findings have important consequences for the radiative forcing component of global climate models and remote sensing measurements that rely on Mie theory to characterize atmospheric dust. We also present experimentally based synthetic phase functions at 550 nm, for both silicate clay and non-clay mineral dust aerosols in the size parameter range X = 2-5, which may be useful for empirical models of the scattering due to particles in the accumulation mode size range.
a b s t r a c tStructural properties, electronic band structure, real and imaginary parts of complex dielectric function of alkali chloride XCl (K, Rb and Li) compounds were investigated under various pressures using first principles calculations. Moreover, Gibbs free energies were also calculated at those pressures. Calculated results of the Gibbs free energy show that LiCl does not show any structural phase transition. However, structural phase transitions of KCl and RbCl occur from NaCl (B1) to CsCl (B2) at 4.5 and 1.7 GPa pressures, respectively. The electronic band gaps under pressure were also calculated. The calculated physical properties of these compounds are compared with the previous theoretical and experimental results and a good agreement was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.