a b s t r a c tStructural properties, electronic band structure, real and imaginary parts of complex dielectric function of alkali chloride XCl (K, Rb and Li) compounds were investigated under various pressures using first principles calculations. Moreover, Gibbs free energies were also calculated at those pressures. Calculated results of the Gibbs free energy show that LiCl does not show any structural phase transition. However, structural phase transitions of KCl and RbCl occur from NaCl (B1) to CsCl (B2) at 4.5 and 1.7 GPa pressures, respectively. The electronic band gaps under pressure were also calculated. The calculated physical properties of these compounds are compared with the previous theoretical and experimental results and a good agreement was observed.
a b s t r a c tIn this paper, we investigated electronic, optic, elastic, dynamic and thermodynamic properties of RbAu compound by density functional theory within the generalized gradient approximation. The calculated static value of real part of dielectric constant is 6.7. The calculated electronic band structure of RbAu shows that RbAu is a semiconductor with an indirect band gap of 0.36 eV. Besides, RbAu obeys mechanical stability and it demonstrates elastic anisotropy. 540K is classical limit for specific heat of RbAu.
Abstract:The structural, electronic, optical and dynamical properties of CsAu compound in the CsCl(B2) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constant, static bulk modulus and first-order pressure derivative of the bulk modulus are reported and compared with previous experimental and theoretical calculations. The calculated electronic band structure for this compound is in good agreement with available theoretical and experimental studies. The present band calculation indicates that CsAu compound has an indirect gap at R→X points. Furthermore, the linear photon-energy-dependent dielectric functions have been calculated. For the first time, the electronic structure results are used, within the implementation of a linear-response technique, for calculations of phonon properties.PACS (2008)
-The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.