The local aerodynamic and heat transfer performance were measured in a rib-roughened square duct as a function of the rib pitch to beight ratio. The blockage ratio of these square obstacles was 10% or 20% depending on whether they were placed on one single (1s) or on two opposite walls (2s). The Reynolds number, based on the channel mean velocity and hydraulic diameter, was fixed at 30000. The aerodynamic description of the flow field was based on local pressure distributions along the ribbed and adjacent smooth walls as well as on 2D LDV explorations in the channel symmetry plane and in two planes parallel to the ribbed wall(s). Local heat transfer distributions were obtained on the floor, between the ribs, and on the adjacent smooth side wall. Averaged parameters, such as friction factor and averaged heat transfer enhancement factor, were calculated from the local results and compared to correlations given in literature. This contribution showed that simple correlations derived from the law of the wall similarity and from the Reynolds analogy could not be applied for the present rib height-to-channel hydraulic diameter ratio (e/Dh=0.1). The strong secondary flows resulted in a three-dimensional flow field with high gradients in the local heat transfer distributions on the smooth side walls.
The aims of this study were to compare, in vitro, the shear bond strength (SBS) of stainless steel orthodontic brackets bonded to silver amalgam with the use of three different intermediate resins and two different adhesives, and to evaluate bond failure mode. Forty-five amalgam specimens were divided into three equal groups. In groups 1 and 2, the brackets were bonded with Unite (3M Unitek) using Reliance Metal Primer (RMP; Reliance Orthodontic Products) and Power Bond OLC (PB OLC; Ortho Organizers Inc.) as intermediate resins, respectively. In group 3, Resinomer and One-Step Plus (OS+; Bisco Inc.) were used. Thirty bovine teeth served as the controls to test bracket bonding to acid-etched enamel with Unite and Resinomer-OS+. After thermocycling from 10 to 50 degrees C 1000 times, all samples were tested for SBS. Bond failure sites were classified using a modified adhesive remnant index (ARI) system. Data were analyzed with one-way analysis of variance, post hoc Tukey multiple comparison and chi-square tests. The results showed that the mean SBS to amalgam surfaces were significantly lower than those to etched bovine enamel (P<0.001). There were no statistically significant differences in mean SBS between the amalgam bonding groups (P>0.05). For the ARI, significant differences were found between the amalgam- and enamel-bonding groups (P<0.001). The mean SBS of stainless steel orthodontic brackets bonded to amalgam surfaces with RMP, PB OLC, OS+ intermediate resins and Unite and Resinomer adhesives was significantly lower than to etched bovine enamel. Bond failure occurred at the amalgam-adhesive interface regardless of the adhesive system and without damage to the amalgam restoration.
This paper deals with the application of a three-dimensional Navier-Stokes solver for the prediction of steady viscous compressible flow and heat transfer in a square channel with one rib-roughened wall. The computation results are compared with detailed experiments carried out at the von Karman Institute. The two-dimensional computations agree rather well with the experiments for the prediction of the aerodynamics, even if the recirculation length is overestimated. In this case, a k-l turbulence model seems to be sufficient. However, heat transfer between the ribs is poorly matched except when a thermal ASM (algebraic stress model) turbulence model (GGDH, or generalized gradient diffusion hypothesis), which computes the u iθ (velocity-temperature) correlations by algebraic equations, is used. The three-dimensional computations capture the correct position of the reattachment point with the k-l turbulence model. It is nevertheless necessary to use the ASM turbulence model to find vortices turning the correct way in the cross-sections. These are indeed secondary flows of the second kind which are mainly due to turbulence anisotropy when the ribs are inclined at 90° to the flow direction.
The building sector consumes 36% of the world’s energy and produces around 40% of energy-related carbon emissions. While the building industry moves towards a zero net greenhouse-gas emission policy, ventilation is, and will be, a necessity for the preservation of air quality—especially in climates defined by unsavoury conditions. Therefore, a “mixing mode” cooling system was employed to lower the required energy consumption at an earthen building situated in the premises of Istanbul Technical University. A room of the high-mass earthen building was monitored under different ventilation and shading conditions. Night ventilation was conducted using two modes, 3.2 and 2.3 air changes per hour, and the air conditioning unit, operating from 08:00 to 17:00, had a set temperature of 23 ∘C. Night ventilation was somewhat impactful, reducing the average expected cooling energy demand up to 27%. Furthermore, the earthen building proved to be extremely effective on moderating extremes of temperature under non-ventilated conditions. During a rather hot day, with an outdoor maximum temperature of 35 ∘C, the indoor maximum temperature of the high-mass building was only 25 ∘C, namely within thermal comfort levels. The diurnal temperature proved to be key in the effective application of night ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.