Alzheimer’s disease (AD), the most common form of dementia, is a neurodegenerative disease characterized by progressive cognitive deterioration together with declining activities of daily living and neuropsychiatric symptoms or behavioural changes. The oldest, on which most currently available drug therapies are based, is known as the “cholinergic hypothesis” and suggests that AD begins as a deficiency in the production of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have gained a great popularity for the treatment of AD. In this study, we screened in vitro inhibitory activities of a number of phenolic acids (chlorogenic, caffeic, gallic, and quinic acids) as well as of various flavonoid derivatives (genistein, biochanin A, naringin, apigenin, quercetin, luteolin-7-O-rutinoside, kaempferol-3-O-galactoside, diosmin, silibinin, and silymarin) against AChE and BChE at 1 mg/ml concentration using a microplate-reader assay based on the Ellman method. Among them, only quercetin showed a substantial inhibition (76.2%) against AChE, while genistein (65.7%), luteolin-7-O-rutinoside (54.9%), and silibinin (51.4%) exerted a moderate inhibition on BChE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.