The purpose of this article is to delineate strategic considerations and provide practical procedures to enable non-experts to synthesize peptides with a reasonable chance of success. This article is not encyclopedic but rather devoted to the Fmoc/tBu approach of solid phase peptide synthesis (SPPS), which is now the most commonly used methodology for the production of peptides. The principles of SPPS with a review of linkers and supports currently employed are presented. Basic concepts for the different steps of SPPS such as anchoring, deprotection, coupling reaction and cleavage are all discussed along with the possible problem of aggregation and side-reactions. Essential protocols for the synthesis of fully deprotected peptides are presented including resin handling, coupling, capping, Fmoc-deprotection, final cleavage and disulfide bridge formation.
The dramatic rise of antibiotic-resistant bacteria over the past two decades has stressed the need for completely novel classes of antibacterial agents. Accordingly, recent advances in the study of prokaryotic transcription open new opportunities for such molecules. This paper reports the structure-activity relationships of a series of phenyl-furanyl-rhodanines (PFRs) as antibacterial inhibitors of RNA polymerase (RNAP). The molecules have been evaluated for their ability to inhibit transcription and affect growth of bacteria living in suspension or in a biofilm and for their propensity to interact with serum albumin, a critical parameter for antibacterial drug discovery. The most active of these molecules inhibit Escherichia coli RNAP transcription at concentrations of =10 microM and have promising activities against various Gram-positive pathogens including Staphylococcus epidermidis biofilms, a major cause of nosocomial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.