Respiratory insufficiency is a symptom that requires hospitalization. This work investigates whether it is possible to detect this condition by analyzing patient's speech samples; the analysis was performed on data collected during the first wave of the COVID-19 pandemic in 2020, and thus limited to respiratory insufficiency in COVID-19 patients. For that, a dataset was created consisting of speech emissions of both COVID-19 patients affected by respiratory insufficiency and a control group. This dataset was used to build a Convolution Neural Network to detect respiratory insufficiency using speech emission MFCC representations. Methodologically, dealing with background noise was a challenge, so we also collected background noise from COVID-19 wards where patients were located. Due to the difficulty in filtering noise without eliminating crucial information, noise samples were injected in the control group data to prevent bias. Moreover, we investigated (i) two approaches to address the duration variance of audios, and (ii) the ideal number of noise samples to inject in both patients and the control group to prevent bias and overfitting. The techniques developed reached 91.66% accuracy. Thus we validated the project's Leading Hypothesis, namely that it is possible to detect respiratory insufficiency in speech utterances, under real-life environmental conditions; we believe our results justify further enquiries into the use of automated speech analysis to support health professionals in triage procedures.
RESUMOO ruído das máquinas agrícolas, com o passar do tempo, pode provocar problemas auditivos nos operadores. De acordo com as normas regulamentadoras do Ministério do Trabalho e Emprego (NR 15), a exposição diária máxima permitida, durante uma jornada de trabalho de 8 horas, é de 85 decibels (dB (A)). Baseado neste contexto, este trabalho teve como objetivo avaliar os níveis de ruído emitidos por 12 tratores agrícolas de diferentes modelos e potências, bem como avaliar a existência de itens de ergonomia e segurança destes, comparando os resultados com as normas vigentes no Brasil. Os itens ergonômicos e de segurança dos tratores foram vistoriados e listados quanto sua conformidade ou não. Observou-se que para tratores sem cabina fechada o nível de ruído próximo (10 cm) ao ouvido dos operadores foi superior ao nível permitido pela Norma Regulamentadora (NR15), sendo necessário o uso de protetor auricular por parte dos operadores. Conclui-se ainda que a diminuição dos ruídos junto ao ouvido do operador é proporcionada pela presença de cabinas fechadas originais de fábrica. Ademais, verificou-se que os tratores mais novos atendem melhor aos requisitos de segurança e ergonomia. Palavras-chave: Conforto do operador, medição de ruídos e exposição do operador NOISE LEVEL EVALUATION, ITEMS SECURITY AND ERGONOMIC IN AGRICULTURAL TRACTORS ABSTRACTThe levels of noise emission from agricultural machinery, are not immediately apparent, but the cumulative effects over time include hearing loss According the Brazilian Ministry of Labor and Employment (NR 15), A noise level above the maximum allowed for an 8-hour workday, is 85 decibels (dB (A)). This study aims to evaluate the levels of noise emitted by 12 agricultural tractors of different models powers and to compare the results with existing regulations in Brazil. Ergonomic and safety features of the tractors were surveyed and listed as their compliance or not. It was observed that for tractors without enclosed without cab protection noise level close (10 cm) to the ears of operators were higher than the levels allowed by the Regulatory Standard (NR15), requiring the use of hearing protection for operators. In conclusion although the reduction of noise close to the ear of the operator is provided by the presence of closed factory originating booths. In addition it was found that the newest tractors best meet the safety requirements and ergonomics.
Abstract. Open Educational Resources (OER) are documents that are openly licensed and used for teaching, learning, and research purposes. They cover complete courses, textbooks, videos, softwares and any other tools, materials or techniques to support access to knowledge. The main difficulty, however, is to ensure the quality of these educational resources stored in online repositories. To fill this gap, a method was created using deep neural networks, specifically, a Recurrent Neural Network (RNN) to evaluation the quality of open educational resources, and compared with a Supporting Vector Machine (SVM) and its variations. The research methodology used was the use of an architecture for neural network, the creation of a controlled scenario, and the comparison with the main studies that perform automated evaluation of OER.Resumo. Recursos Educacionais Abertos (REAs) são documentos abertamente licenciados e usados para fins de ensino, aprendizagem e pesquisa. Abrangem cursos completos, livros didáticos, vídeos, softwares e quaisquer outras ferramentas, materiais ou técnicas para apoiar o acesso ao conhecimento. A principal dificuldade, porém,é garantir a qualidade desses recursos educacionais armazenados em repositórios on-line. Para preencher esta lacuna, foi criado um método usando redes neurais profundas, especificamente, uma Rede Neural Recorrente (RNN) para avaliação automatizada da qualidade de recursos educacionais abertos, sendo comparado com uma Máquina de Vetores de Suporte (SVM) e suas variações. A metodologia de pesquisa utilizada foi a criação de uma arquitetura para rede neural, a criação de um cenário controlado, e a comparação com os principais trabalhos que realizam avaliação automatizada de REAs. IntroduçãoRecursos Educacionais Abertos (REAs) foram definidos por diversos trabalhos na literatura, sendo objeto de estudo de uma ampla diversidade de trabalhos [Wiley et al. 2014]. O termo foi cunhado em 2002 pela Unesco [UNESCO. 2002] que convocou o fórum sobre o impacto dos cursos abertos do ensino superior em países em desenvolvimento. Foi definido neste fórum que o termo "aberto" relacionava com recursos educacionais e indicava as possibilidades do conhecimento ser consultado, usado e adaptado por todos sem fins comerciais.A ideia dos REAsé tornar o conhecimento do mundo um bem público tendo a tecnologia em geral, e especificamente a Web, como uma fonte de acesso a esse conhecimento. Entende-se, assim, que os REAs devem permitir seu compartilhamento, uso e
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.