Three major alkaline deoxyribonuclease (DNase) activities have been identified in sorbose-containing liquid culture medium in which wild-type Neurospora crassa were grown: DNase A, a Ca++-dependent endonuclease of molecular weight 65,000 daltons which has no specificity for single-or double-stranded DNA (ss-DNA or ds-DNA) and no activity with RIWA; DNase B, a Mg++-dependent singlestrand specific exonuclease of molecular weight 78,000 daltons active with both ss-DNA and RNA; DNase C, a divalent metal ion-dependent endo-exonuclease of molecular weight 65,000 having single-strand specific endonuclease activity with ss-DNA and RNA and exonuclease activity with ds-DNA. Three mutants which were shown previously to have wide spectra of sensitivities to mutagens, and which exhibited reduced release of DNase activity on sorbose-containing agar test plates (the Nuh phenotype), were deficient relative to the wild-type in the release of these major alkaline DNases into the liquid culture medium. The uvs-3 mutant released only small amounts of DNase A and DNase C; nuh-4 did not release detectable DNase C and released only a very low level of DNase B; uvs-6 released only a low level of DNase A. A nuh mutant (nuh-3) which is not mutagen sensitive relative to the wild-type released low levels of DNase B.On the other hand, an ultraviolet light-sensitive mutant (nuc-2) which does not have the Nuh phenotype was normal in the release of these DNases.
Nucleases derived from Neurospora crassa mycelia with neutral single-strand (ss) endodeoxyribonuclease activity have been examined by immunochemical techniques and by sodium dodecyl sulfate - DNA gel electrophoresis. All of the intracellular nucleases, which have different divalent metal ion requirements, different strand specificities with single- and double-strand DNA, different modes of action on DNA and RNA, and other distinguishing characteristics, are immunochemically related to Neurospora endo-exonuclease. The evidence indicates that these enzymes are derived from one or more related large, inactive (precursor?) polypeptides that are first converted to 75- to 80-kdalton active polypeptide(s) which are very protease sensitive. Further limited proteolysis results in the production of the various active forms of nuclease studied here. Some proteolytic conversions may occur in a controlled manner in vivo in different cell compartments, but others are very likely artifacts resulting from uncontrolled proteolysis during extraction and isolation. The intracellular forms of Neurospora endo-exonuclease are immunologically cross-active with ss-DNA-binding nucleases isolated from Aspergillus nidulans and Saccharomyces cerevisiae. They are not immunochemically related to two extracellular Neurospora nucleases, the pancreatic DNase-I-like DNase A and a ss-specific exonuclease, and they are also not related to other fungal and plant nucleases with ss-specific endonuclease activity such as the S1 nuclease of Aspergillus oryzae, the P1 nuclease of Penicillium citrinum, and mung bean nuclease.
Endo-exonuclease (EE) has been found in both active and inactive, but trypsin-activatable, forms in Aspergillus nidulans. Active EE was present mainly in nuclei, mitochondria, and vacuoles, while trypsin-activatable EE was mainly in the cytosol. The active form accounts for over 90% of the neutral deoxyribonuclease activity extracted from mycelia. A single strand (ss) DNA-binding EE associated with a 28 kilodalton (kDa) polypeptide was partially purified and characterized. It was found to closely resemble, in size and enzymological properties, the ss-DNA-binding EE previously purified from Neurospora crassa. Aspergillus nidulans EE was also found to be immunochemically related to the N. crassa EE and, like that enzyme, was probably derived from a polypeptide of 90 kDa or larger through proteolysis during extraction and purification. It had divalent metal ion-dependent (Mg2+, Mn2+, or Zn2+) activity on both DNA and RNA, which ultimately produced small 5'-P-terminated oligonucleotides. The nuclease activity was mixed endo- and exo-nucleolytic with ss-DNA as substrate, but largely exonucleolytic with double strand (ds) DNA. Superhelical phi X-174 DNA was nicked by EE to form relaxed circular and then linear ds-DNA, which was rapidly degraded to shorter fragments. Linearized pBR322 DNA was extensively nicked internally under conditions where there was relatively low exonuclease activity, but this nicking required that 5'-P-termini be present on the linear ds-DNA. The levels of active EE found in extracts of two recombination-deficient mutants of A. nidulans, uvsC and uvsE, dit not differ significantly from those in extracts of the wild type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.