In a series of 1502 patients seen in our Facial Paralysis Research Clinic 1048 were diagnosed as having Bell's palsy. Review of clinical, epidemiologic, and laboratory data, plus review of the literature, has led to the conclusion that Bell's palsy is an acute benign cranial polyneuritis probably caused by reactivation of the herpes‐simplex virus, and the dysfunction of the motor cranial nerves (V, VII, X) may represent inflammation and demyelinization rather than ischemic compression. Spinal fluid analysis suggests that the disease is a phenomenon of the central nervous system with secondary peripheral neural manifestations. With our presently available information, treatment of a viral disease with an anti‐inflammatory agent is rational. Prednisone treatment started within the first week of the disease can restore better function to the paralyzed face than is achieved without such therapy, and facial nerve decompression has been unnecessary.
The number of patients dialyzed for ESKD exceeds 500,000 in the United States and more than 2.6 million people worldwide, with the expectation that the worldwide number will double by 2030. The human cost of health and societal financial cost of ESKD is substantial. Dialytic therapy is associated with an unacceptably high morbidity and mortality rate and poor quality of life. Although innovation in many areas of science has been transformative, there has been little innovation in dialysis or alternatives for kidney replacement therapy (KRT) since its introduction approximately 70 years ago. Advances in kidney biology, stem cells and kidney cell differentiation protocols, biomaterials, sensors, nano/microtechnology, sorbents and engineering, and interdisciplinary approaches and collaborations can lead to disruptive innovation. The Kidney Health Initiative, a public–private partnership between the American Society of Nephrology and the US Food and Drug Administration, has convened a multidisciplinary group to create a technology roadmap for innovative approaches to KRT to address patients’ needs. The Roadmap is a living document. It identifies the design criteria that must be considered to replace the myriad functions of the kidney, as well as scientific, technical, regulatory, and payor milestones required to commercialize and provide patient access to KRT alternatives. Various embodiments of potential solutions are discussed, but the Roadmap is agnostic to any particular solution set. System enablers are identified, including vascular access, biomaterial development, biologic and immunologic modulation, function, and safety monitoring. Important Roadmap supporting activities include regulatory alignment and innovative financial incentives and payment pathways. The Roadmap provides estimated timelines for replacement of specific kidney functions so that approaches can be conceptualized in ways that are actionable and attract talented innovators from multiple disciplines. The Roadmap has been used to guide the selection of KidneyX prizes for innovation in KRT.
To determine whether there is a pulmonary chemoreceptor for CO2 that influences spontaneous ventilation (VE), we separated the systemic and pulmonary circulations and controlled partial pressure of CO2 (PCO2) independently in each circuit under hyperoxic conditions and measured VE. Dogs were anesthetized with ketamine and maintained with 1% halothane. Systemic venous return was drained from the right atrium and passed through an oxygenator and heat exchanger; blood was returned to the ascending aorta. An identical bypass was established for the pulmonary circulation, draining blood from the left atrium and returning it to the pulmonary artery. The heart was fibrillated; all cannulas were brought through the chest wall; and the median sternotomy was closed. Blood flow through both circuits was maintained at 0.080 l . kg-1 . min-1. Systemic PCO2 (PSCO2) was held constant at three different nonoscillatory levels. At each level, pulmonary PCO2 (PpCO2) was randomly varied between approximately 7 and 85 Torr. With PSCO2 at 43.5 +/- 0.4 Torr, VE increased 2.67 +/- 0.61 l . min-1 as PpCO2 was varied between these limits. With PSCO2 at 63.8 +/- 2.5 Torr, VE increased 3.95 +/- 0.73 l . min-1 over these same limits of PpCO2. With PSCO2 below 25--30 Torr, the dogs were apneic and no longer responded to changes in PpCO2. The effect of PpCO2 on VE was abolished by vagotomy. These results suggest the presence of a CO2 chemoreceptor in the lung that interacts with the nonpulmonary chemoreceptors in the control of VE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.