Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.
Optical trapping allows the trapping and manipulation
of dielectric
microparticles. However, full control over all six degrees of freedom
of the trapped object is challenging. Here, we use ferromagnetic iron-doped
upconversion microparticles for simultaneous optical trapping and
magnetic micromanipulation that allows full control over all translational
and rotational degrees of freedom. These microparticles have a low
absorption that allows optical trapping and a high coercivity and
saturation magnetization that allow magnetic manipulation. The particles
will enable micromanipulation experiments, for example, in single-molecule
biophysics.
3D Pitch (out-of-plane) rotational motion has been generated in spherical particles by maneuvering the laser spots of holographic optical tweezers. However, since the spherical particles, which are required to minimise drag are perfectly isotropic, a controllable torque cannot be applied with it. It remains free to spin about any axis even after moving the tweezers beams. It is here that we trap birefringent particles of about 3 μm diameter in two tweezers beams and then change the depth of one of the beam foci controllably to generate a pitch rotational torque-wrench and avoid the free spinning of the particle. We also detect the rotation with newly developed pitch motion detection technique and apply controlled torques on the particle.
Particles can be assembled at the air-water interface due to optically induced local heating. This induces convection currents in the water which brings particles to the surface. We improve the technique by employing an upconverting particle (UCP), which, when illuminated with 975 nm light, not only emits visible emission but also generates heat owing to the poor efficiency of the upconversion process. This induces strong convection currents which makes particles dispersed in the suspension assemble at the interface and immediately under the UCP. We show assembly of polystyrene particles of 1 μm diameter and diamonds of 500 nm diameter bearing Nitrogen-Vacancy (NV) centers around the UCP. We also show, for the first time, that the microdiamonds are assembled within about 30 nm at the bottom of the UCP by utilizing non-radiative energy transfer that reduces the lifetime of the 550 nm emission from about 90 μs to about 50 μs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.