The biosynthesis of silver nanoparticles with leaf aqueous extract of R. mucronata provides potential source for the larvicidal activity against mosquito borne diseases.
The present study was aimed to identify the antibacterial potential of biosynthesised silver nanoparticles using different plant parts (leaves, bark and root) of Avicenna marina mangrove plant. Of the selected three different parts, the leaf extract showed the maximum synthesis of silver nanoparticles. The in vitro antibacterial assay (100 lg disk-1 concentration) showed the results of maximum zone of inhibition with the E. coli (18.40 ± 0.97 mm), and minimum (10.87 ± 1.33 mm) zone of inhibition with S. aureus but the concentrations of MIC and MBC values ranged between 6.25 and 50.0 lg ml-1 between the selected bacterial strains. The FTIR results of most potent leaf extract-synthesized silver nanoparticles showed the promi
Malaria is one of the most prevalent infectious diseases in the world. Treatment for malaria is commonly inadequate due to the lack of quality assured effective drugs. The effectiveness of these drugs is declining at an ever accelerating rate, with consequent increase in malaria related morbidity and mortality. The newest antiplasmodial drug from plants is needed to overcome this problem. Numerous mangroves and mangal associates are used as folklore medicine to treat various human diseases. The mangrove plant species are a good source of potential bioactive entities which exhibits many therapeutic properties. The present study was carried out to test the antiplasmodial activity of five mangrove plant species distributed along the South East coast of India. Bruguiera cylindrica, Ceriops decandra, Lumnitzera racemosa, Rhizophora apiculata, and Rhizophora mucronata mangrove plant extracts exhibited in vitro antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum. Of which, the ethanolic bark extract of R. mucronata exhibited high antiplasmodial activity (IC(50)=62.18 μg.ml(-1)). Statistical analysis reveals that, significant antiplasmodial activity (P<0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out and it shows that no morphological differences in erythrocytes by the ethanolic extract of mangrove plants after 48 h of incubation. The screening for phytochemical constituents in the mangrove plants were carried out and it reveals that, the presence of alkaloids, triterpenes, flavonoids, tannins, catachin, anthroquinone, phenols, sugars, and proteins. This study shows that the mangrove plants had a source of lead compounds for the development of new drugs for the treatment of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.