We previously reported that induction of the adipocyte-specific gene adiponectin (Adipoq) during 3T3-L1 adipocyte differentiation is closely associated with epigenetic memory histone H3 acetylation on the transcribed region of the gene. We used 3T3-L1 adipocytes and Brd4 heterozygous mice to investigate whether the induction of Adipoq during adipocyte differentiation is regulated by histone acetylation and the binding protein bromodomain containing 4 (BRD4) on the transcribed region. Depletion of BRD4 by shRNA and inhibition by (+)-JQ1, an inhibitor of BET family proteins including BRD4, reduced Adipoq expression and lipid droplet accumulation in 3T3-L1 adipocytes. Additionally, the depletion and inhibition of BRD4 reduced the expression of many insulin sensitivity-related genes, including genes related to lipid droplet accumulation in adipocytes. BRD4 depletion reduced P-TEFb recruitment and histone acetylation on the transcribed region of the Adipoq gene. The expression levels of Adipoq and fatty acid synthesis-related genes and the circulating ADIPOQ protein level were lower in Brd4 heterozygous mice than in wild-type mice at 21 days after birth. These findings indicate that BRD4 regulates the Adipoq gene by recruiting P-TEFb onto acetylated histones in the transcribed region of the gene and regulates adipocyte differentiation by regulating the expression of genes related to insulin sensitivity.
Background
The expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α.
Methods
Short-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays.
Results
We found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including
Gpd1
,
Cidec
, and
Cyp4b1
, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around
Cidec
and
Gpd1
genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids.
General significance
Medium- and short-chain fatty acids induce the expressions of
Cidec
and
Gpd1
, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.