Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffinembedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.cancer diagnostics | high-content cellular analysis | image analysis | mTOR | multiplexing
Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.
SummaryEpithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.
This paper describes a new, physically interpretable, fully automatic algorithm for removal of tissue autofluorescence (AF) from fluorescence microscopy images, by non-negative matrix factorization. Measurement of signal intensities from the concentration of certain fluorescent reporter molecules at each location within a sample of biological tissue is confounded by fluorescence produced by the tissue itself (autofluorescence). Spectral mixing models use mixing coefficients to specify how much fluorescence from each source is present and unmixing algorithms separate the two fluorescent sources. Current spectral unmixing methods for AF removal often require a priori knowledge of mixing coefficients. Those which do not, such as principal component analysis, generate negative mixing coefficients that are not physically meaningful. Non-negative matrix factorization constrains mixing coefficients to be non-negative, and has been used for spectral unmixing, but not AF removal. This paper describes a novel non-negative matrix factorization algorithm which separates fluorescent images into true signal and AF components utilizing an estimate of the dark current. We also present a test-bed, based on fluorescent beads, to compare the performance of different AF removal algorithms. Our algorithm out-performed previous state of the art on validation images.
Associating specific gene activity with functional locations in the brain results in a greater understanding of the role of the gene. To perform such an association for the more than 20 000 genes in the mammalian genome, reliable automated methods that characterize the distribution of gene expression in relation to a standard anatomical model are required. In this paper, we propose a new automatic method that results in the segmentation of gene expression images into distinct anatomical regions in which the expression can be quantified and compared with other images. Our contribution is a novel hybrid atlas that utilizes a statistical shape model based on a subdivision mesh, texture differentiation at region boundaries, and features of anatomical landmarks to delineate boundaries of anatomical regions in gene expression images. This atlas, which provides a common coordinate system for internal brain data, is being used to create a searchable database of gene expression patterns in the adult mouse brain. Our framework annotates the images about four times faster and has achieved a median spatial overlap of up to 0.92 compared with expert segmentation in 64 images tested. This tool is intended to help scientists interpret large-scale gene expression patterns more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.