Improper use of fertilizers and its ratio is one of the main reasons for low productivity; therefore balance fertilization is required to maintain crop production and improved soil fertility. Therefore the experiment was carried out at Cereal Crop Research Institute (CCRI) Pirsabak, Distract Nowshera KP, Pakistan during Kharif 2016. To study the effect of different phosphorus (P) sources and their ratios on maize yield and yield components, an experiment was carried out in a Randomized Complete Block Design (RCBD) with three replication. The treatments consisted of sole application of Farmyard Manure (FYM), Poultry Manure (PM) and Diammonium Phosphate (DAP), 75% FYM+25% DAP, 50% FYM+50% DAP, 75% PM+25% DAP, 50% PM+50% DAP and a control treatment with no P fertilizer. Phosphorus was applied at the rate of 100 kg ha -1 from different sources in different ratios. The results indicated a significant effect of different phosphorus sources on days to tasselling, days to silking, days to maturity, plant height, grains ear -1 , grain yield, biological yield, and harvest index, whereas the emergence m -2 was found non-significant with different P sources. The combined use of organic and inorganic P sources delayed tasselling, silking and maturity. Plant height, grains ear -1 , biological yield, grain yield, and harvest index was also higher with the addition of P from both sources as compared with the sole application of organic or inorganic fertilizer. The combined application of organic manures 50:50 (FYM or PM) and inorganic fertilizer (DAP) performed better as compared to the rest of the ratios and produced higher yield and yield components.
The knowledge of heritability helps the plant breeder to understand the performance of an attribute under consideration in next generation. Fourteen genotypes including one local check were assessed at the experimental farm of The University of Agriculture, Peshawar during spring 2016. The experiment was laid out in randomized complete block design with three replications. Analysis of variance showed highly significant differences (P≤0.01) for days to anthesis, days to silking, plant height, ear height, cob length, kernel rows cob-1 and 100-kernel weight, whereas grain yield revealed nonsignificant differences (P>0.05) among the genotypes evaluated. Genotypes, PSCV-9, PSCV-11, PSCV-13 and Azam as a check showed minimum days to anthesis (77.33), while minimum days to silking (79.33) were exhibited by Azam as a check. Genotype, PSCV-8 showed minimum plant height (107.13 cm) and ear height (41.73 cm), while maximum plant height (147.33 cm) and ear height (70.86 cm) was observed for PSCV-12. Genotype, PSCV-8 showed minimum ear length (17.28 cm), while maximum ear length (22.47 cm) was observed for PSCV-4. Minimum number of kernel rows cob-1 (12.33) were observed for PSCV-8, while maximum number of kernel rows cob-1 (15.33) were observed for PSCV-4. Minimum 100-kernel weight (28 g) was observed for PSCV-5 and Azam as a check, while maximum 100-kernel weight (38 g) was observed for PSCV-3. Low to moderate broad sense heritability estimates were observed for all the traits except for days to anthesis and days to silking which showed high to moderate heritability estimates. The present study revealed considerable amount of diversity among open pollinated maize varieties which could be utilized for further improvement in maize breeding.
Soil salinity is one of the significant abiotic threats to crops that deteriorates crop yields, and the world’s increasing population faces serious food problems due to abiotic threats. It is one of the major abiotic problems affecting more than 30% of irrigated land across the globe. The concentrations of various salts, such as NaCl, KCl, Na2SO4, and Na2CO3, cause saline stress; however, NaCl is the most abundant salt in the soil. Salinity could affect seed germination due to osmotic potential or due to specific toxic ion effects, and it decreases germination percentage and increases germination time, and high salt stress is responsible for delaying seed germination. Therefore, it is necessary to alleviate the negative impact of soil salinity during seedling growth periods, so the growth of crops in salt-affected soil will be much more enhanced. Seed priming is the utmost effective technique that could mitigate the harmful impact of soil salinity. This methodology not only minimizes the salinity tolerance but also strengthens the defense system of crops. In this technique, the hydration level within the seeds is controlled by applying pre-sowing treatments, allowing specific pre-germinative metabolic processes to occur and preventing radical emergence. Seed priming also decreases the seed germination time and improves antioxidant enzyme activities, stopping or minimizing reactive oxygen species’ adverse effects. It enhances the seedling performance with rapid and homogenous germination and vigorous and dynamic growth of the seedling, achieving a physiological situation leading to quick and enhanced emergence and germination of various crops. This review covers the mechanisms of seed priming, salinity tolerance, seed priming crosstalk with salinity tolerance, and seed priming techniques that induce biochemical, physiological, and morphological mechanisms in saline stress. Further research needs to be performed on advanced seed priming methods such as priming with nanoparticles and seed priming with physical agents (UV radiation, X-rays, gamma rays, and microwaves) to minimize the negative impact of salinity stress on different crops under different harsh environmental conditions.
several agro-based industries. It belongs to the cereal crop family which require an adequate amount of essential nutrients due to its ability high growth rate and producing large biomass yield [2]. The nature of Pakistani soils comes in category of alkaline calcareous soils in which maize crops suffer from nitrogen
Citrus waste having acidic reaction may have additional advantage over other organic residues as compost materials in alkaline calcareous soil but the process of its composting is very slow. In this study an attempt was made to access the release of P from RP added citrus waste during 180 of incubation and its effect on pH and EC of the composting media. Citrus waste consisting pulp, fruits skin and juice with total net weight of 500 g (fresh) were added with 0, 15, 30 and 60 g of RP (equivalent to 0, 3, 6 and 12%, respectively) and were incubated in oven at 36°C ± 2 for 180 days. All pots were also added with 20 mL water and 20 g FYM to optimize the moisture level and augment the microbial decay in pots. Results showed that RP mixed citrus waste had higher pH, EC and more water-soluble P as compared to non-treated citrus waste (control) at all incubation intervals of 0, 15, 30, 60, 120 and 180 d suggesting releases of salts and P from RP. These values of pH, EC and water-soluble P increased with increase in RP levels and passage of time which could be associated to neutralization of RP with organic acids of citrus and CO 2 mineralization with time. It is concluded that addition of RP not only enhanced the quality of compost but could also promote the citrus waste decomposition process. Though the higher RP levels was best in our results, but other levels and their consequent effect on soil and crop yields should be assessed along with their environmental risks for wider and long-term recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.