Background
Cigarette smoking is a major risk factor for COPD and COPD severity. Previous genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) and a Dopamine Beta-Hydroxylase (DBH) locus associated with smoking cessation in multiple populations.
Objective
To identify SNPs associated with lifetime average and current CPD, age at smoking initiation, and smoking cessation in COPD subjects.
Methods
GWAS were conducted in 4 independent cohorts encompassing 3,441 ever-smoking COPD subjects (GOLD stage II or higher). Untyped SNPs were imputed using HapMap (phase II) panel. Results from all cohorts were meta-analyzed.
Results
Several SNPs near the HLA region on chromosome 6p21 and in an intergenic region on chromosome 2q21 showed associations with age at smoking initiation, both with the lowest p=2×10−7. No SNPs were associated with lifetime average CPD, current CPD or smoking cessation with p<10−6. Nominally significant associations with candidate SNPs within alpha-nicotinic acetylcholine receptors 3/5 (CHRNA3/CHRNA5; e.g. p=0.00011 for SNP rs1051730) and Cytochrome P450 2A6 (CYP2A6; e.g. p=2.78×10−5 for a nonsynonymous SNP rs1801272) regions were observed for lifetime average CPD, however only CYP2A6 showed evidence of significant association with current CPD. A candidate SNP (rs3025343) in the DBH was significantly (p=0.015) associated with smoking cessation.
Conclusion
We identified two candidate regions associated with age at smoking initiation in COPD subjects. Associations of CHRNA3/CHRNA5 and CYP2A6 loci with CPD and DBH with smoking cessation are also likely of importance in the smoking behaviors of COPD patients.
Emerging data suggest a role for periostin in refining asthma phenotypes and predicting the response to targeted therapy. Although early data are promising, further investigations are needed to confirm these findings and to identify other clinical applications in which periostin may be valuable.
Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7− TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7− TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.