This paper presents the comparison of two metaheuristic approaches: Differential Evolution (DE) and Particle Swarm Optimization (PSO) in the training of feed-forward neural network to predict the daily stock prices. Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument traded on a financial exchange. The successful prediction of a stock's future price could yield significant profit. The feasibility, effectiveness and generic nature of both DE and PSO approaches investigated are exemplarily demonstrated. Comparisons were made between the two approaches in terms of the prediction accuracy and convergence characteristics. The proposed model is based on the study of historical data, technical indicators and the application of Neural Networks trained with DE and PSO algorithms. Results presented in this paper show the potential of both algorithms applications for the decision making in the stock markets, but DE gives better accuracy compared with PSO.
The state of the weather became a point of attraction for researchers in recent days. It control in many fields as agriculture, the country determines the types of crops depend on state of the atmosphere. It is therefore important to know the weather in the coming days to take precautions. Forecasting the weather in future especially rainfall won the attention of many researchers, to prevent flooding and other risks arising from rainfall. This Paper presents a vigorous hybrid technique was applied to forecast rainfall by combining Particle Swarm Optimization (PSO) and Multi-Layer Perceptron (MLP) which is popular kind used in Feed Forward Neural Network (FFNN). The purpose of using PSO with MLP is not just to forecast the rainfall but, to improve the performance of the network; this was proved by comparison with various Back Propagation (BP) an algorithm such as Levenberg-Marquardt (LM) through results of Root Mean Square Error (RMSE). RMSE for MLP based PSO is 0.14 while RMSE for MLP based LM is 0.18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.