A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiometric polarization measurements. The results revealed that the (%IE) for carbon steel corrosion by ADNQ2O is (89.88%). The obtained thermodynamic parameters support the physical adsorption mechanism. The adsorption followed the Langmuir isotherm. The surface change on carbon steel was studied using SEM (Scanning Electron Microscopy).
The inhibition ability of the new derivative (quinolin-2-one), namely (1-{[5-(2-Chloro-phenylazo)-2- hydroy-benzylidene]-amino}-4,7-dimethyl -6-nitro- 1H-quinolin-2-one (CPHAQ2O)) towards carbon steel corrosion in (3.5% NaCl) and (0.5M HCl) solutions were evaluated by potentiodynamic polarization at different inhibitor concentrations. Polarization curves showed that the evaluated compound acted as mixed inhibitors, and the adsorption of the evaluated inhibitor obeys the Langmuir adsorption isotherm in both salt and acid solutions. The results revealed that the percentage inhibition efficiency (%IE) in the salty solution (90.55%) is greater than that in the acidic solution (77.62%). The surface changes of the carbon steel and the film persistency of the inhibitor were studied using SEM (Scanning Electron Microscopy).
Corrosion is in essence a statistical effect governed by a number of variables. microscopic variations in a surface tend to cause different forms of corrosion and also variations in the corrosion rate over either a wide or small area (pitting). In these areas the simple assumption that corrosion rate is uniform across an area is unlikely to be accurate, and sample thickness measurements are unlikely to be representative of the whole component.The corrosion effect on the operability and serviceability of bottom plates of a steel aboveground storage tank, the effect which is considered to be a serious threat to the tank structural integrity. In this study the data of the analysis are collected as a readings of thickness through all the area of the tank bottom, processed statically and shows that the critical thickness profile represented by an averaged value for thickness could be reliably taken to consideration for further analysis through finite element when the COV is less than 10%, The finite element analysis result concise with the results of basic design limits.
A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitrobenzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H 2 O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl) and (0.5M HCl) solutions were studied using potentiometric polarization measurements. The results revealed that the (%IE) in the salty solution (94.98%) is greater than that in the acidic solution (81.40%). The thermodynamic parameters obtained, supported the physical adsorption mechanism and the adsorption followed the Langmuir adsorption isotherm. The surface changes of the carbon steel were studied using SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.