Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.
We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550∼800 kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500 000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30 dB at quality factors of > 20 000 are achieved. In addition, we have developed a superconducting switch which allows continuous tuning of the detector's quality factor, and to sensitively tune the particle-detector interaction. This allowed us to improve frequency resolution at constant averaging time, which is crucial for single antiproton spin-transition spectroscopy experiments, as well as improved measurements of the proton-to-antiproton charge-to-mass ratio.
We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1%92.1%. Spin-state initialization with >99.9%>99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.