Abstract:The cellulose paper treated in proportional mixture systems showed higher liquid absorption compare to only EtOH and MeOH treatments. It was approximately 40-70% and 50-91% higher for EtOH-NaOH and MeOH-NaOH treated papers, respectively. All conditions apparently bring about an effect of decreased strength for papers. The lowest tensile strength of 13.0 N/mm was found with EtOH and NaOH treated samples after 5 th repeating wetting-drying stage. But, some conditions gave approximately 21-59.5% higher stretch than untreated samples. The pore size distributions of papers were evaluated with Simons stain procedure and experimental results usually consisted with sorption data. The less intense CH 2 -CH 2 -vibrations (1450-1700 cm -1 ) and C-C and C-O-C peak areas in FTIR spectra indicates lowering H-bonds in solvent treated and dried paper network structure.
Apple and cherry pruning with red pinewood particles in various proportions were used as the raw material for the experimental particleboard manufacturing in laboratory conditions. The results showed that there were no considerable differences in the main chemical constituents of carbohydrate and lignin content, although there were some differences found for extractives that are considerably higher for both cherry and apple pruning. The mean modulus of rupture values of boards were found to ranged from 12.4 to 18.48 MPa. These indicated that all the boards, except for the board type F (prepared from 100% apple pruning), met the minimum bending strength required in standard for general-purpose particleboards. The modulus of elasticity and internal bond of the experimental particleboards usually decreased as red pinewood particle content decreases in proportion. However, all the boards produced in this study met the minimum modulus of elasticity, internal bond, and surface strength required in standard for general-purpose particleboards. However, the thickness swelling for 24 h was considerably higher than the required in standard value of 14% for all boards.
Red pine cone and barks combined with red pine wood particles in various proportions were used as the raw materials for one and three layered experimental particleboard manufacturing in laboratory conditions. The pine cones and barks have higher lignin, but lower holocellulose content compare to wood. For bark-based panels, the highest MOR (2.52 MPa) corresponded to the lowest thickness swelling (9.3%) and marginally highest IB at 150 o C and 8% adhesive level. The 24 hour thickness swelling (TS) values obtained in this study were lower than the required TS-EN 312 (2005) value of 14% for all bark-based boards. However, the single-layer bark-based boards demonstrated higher mechanical properties compared to three-layer boards using similar manufacturing conditions. The boards exposed to atmospheric conditions have considerably darkened (-DL) and lower surface roughness changes. Meanwhile, for single-layer cone boards, the highest MOR (4.66 MPa) was found at 150 o C and 8% adhesive level, whereas the highest IB (1.54 MPa) and lowest TS (32.9%) were found at 150 o C and 10% adhesive content. The cone-based panels had higher surface color changes (lightness and total color difference) compared to red pine wood panels. The particleboards produced using cone in the proportion of wood resulted in lower TS compared to boards made from only red pine wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.