One of the challenges for single-screw micro-extrusion or additive manufacturing (AM), thus 3D printing, of polymers is controlling the melting efficiency so that energy and equipment costs can be minimized. Here, a numerical model is presented for AM process design, selecting acrylonitrile–butadiene–styrene (ABS) as viscoelastic reference polymer. It is demonstrated that AM melting is different compared to conventional melting due to variation in extrusion dimensions, leading to a different balance in heating by conduction and viscous heat dissipation as caused by the shearing between the melt layers in the associated film layer near the barrel. The thickness of this melt film layer is variable along the screw length, and it is shown that simplified models assuming an overall average value are too approximate. It is highlighted that the screw frequency, pitch angle and compression ratio are important process parameters to control the point of melt finalization. In addition, the power-law index reflecting the shear thinning nature of the polymer melt is showcased as a key parameter. Moreover, AM process results assuming constant and temperature dependent specific heat capacities and thermal conductivities are compared. The current work opens the door for on-line AM process control, addressing all relevant operating and material parameters.
To improve the product quality of polymeric parts realized through extrusion-based additive manufacturing (EAM) utilizing pellets, a good control of the melting is required. In the present work, we demonstrate the strength of a previously developed melt removal using a drag framework to support such improvement. This model, downscaled from conventional extrusion, is successfully validated for pellet-based EAM—hence, micro-extrusion—employing three material types with different measured rheological behavior, i.e., acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA) and styrene-ethylene-butylene-styrene polymer (SEBS). The model’s validation is made possible by conducting for the first time dedicated EAM screw-freezing experiments combined with appropriate image/data analysis and inputting rheological data. It is showcased that the (overall) processing temperature is crucial to enable similar melting efficiencies. The melting mechanism can vary with the material type. For ABS, an initially large contribution of viscous heat dissipation is observed, while for PLA and SEBS thermal conduction is always more relevant. It is highlighted based on scanning electron microscopy (SEM) analysis that upon properly tuning the finalization of the melting point within the envisaged melting zone, better final material properties are achieved. The model can be further used to find an optimal balance between processing time (e.g., by variation of the screw frequency) and material product performance (e.g., strength of the printed polymeric part).
The paper describes the effect of different manipulations (addition of fiber, nanoclay, nucleating agents and chain extender, blending, annealing, use of a higher mold temperature and stereocomplexation) on the heat resistance of poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB). Therefore, the differential scanning calorimetry profiles, the vicat softening temperatures and the degradation temperatures were measured and compared to standard PLA, PHB, and polypropylene (PP) as reference materials. Furthermore, a comparison between VST and HDT as parameters for heat resistance was made by examining the deformation during contact with hot water. Stereocomplexation and the use of a higher mold temperature seemed the best techniques to obtain PLA‐based materials with good heat resistance, while other manipulations had little to no effect on the processed biopolymer. The addition of chain extender to PLA and PHB had no effect on processed polymers, but it did improve the thermal degradation of PLA during processing. Furthermore, hot fill tests showed that higher VST values were more reliable as a heat resistant parameter than HDT values for these kinds of application. The VST values of PHB were similar to PP, suggesting that PHB also provides opportunities as a packaging material for food products that undergo a heat treatment. POLYM. ENG. SCI., 58:513–520, 2018. © 2017 Society of Plastics Engineers
Characterization of cellulose acetate butyrate (CAB) thin films with 17, 35 and 52 wt% butyryl is carried out to select the most suitable matrix material for the U and Pu containing large-sized dried spike reference material. The virgin CAB samples were aged by vibrations, heat, humidity, UV light and X-rays. Characterization was done by thermo-analytical techniques, gel permeation chromatography, mechanical tests and via Rayleigh and Compton scattering. The results show that CAB with lower butyryl content can withstand higher operational temperatures and has greater mechanical strength while CAB with higher butyryl content seems to be more resistant to radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.