The fungus Amanita phalloides is known to contain two main groups of toxins: amanitins and phallotoxins. The amanitins group effectively blocks the RNA polymerase II enzyme found in eukaryotic cells. As alpha amanitin has a lethal effect on the majority of eukaryotic cells, it can be valuable as an antiparasitic or antifungal drug. It can be used externally against ectoparasites. It is critical that percutaneous applications of the alpha amanitin toxin are not harmful to the recipient. In this study, the absorption and the toxicity of percutaneous and intraperitoneal (ip) applications of 1 mg/kg alpha amanitin to mice were compared. Potential skin, liver and kidney toxicities were investigated through pathological examination. HPLC analysis was used to determine the amount of the toxin. No toxicity or toxin were found in the skin, liver, or kidneys of the mice in the control group. Interestingly, the percutaneous application group also showed no toxicity, and the toxin was not present in this group. After 24 h, Councilman-like bodies and pyknotic cells were observed in the mice in which alpha amanitin was applied intraperitoneally, demonstrating the presence of toxicity. Peak levels of alpha amanitin (µg/mL) in the liver, kidney, and blood in the ip application group were measured at 3.3 (6 h), 0.2 (6 h) and 1.2 (1 h), respectively. The results demonstrated that the toxin was not absorbed through the skin of the mice and that the percutaneous application of alpha amanitin did not have any toxic effects. Thus, alpha amanitin may be administered percutaneously for therapeutic purposes.
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into the cancer mechanisms and aid in the...
Disruption of the gut-brain axis in Parkinson's disease (PD) may lead to motor symptoms and PD pathogenesis. Recently, the neuroprotective potential of different PPARδ-agonists has been shown. We aimed to reveal the effects of erucic acid, peroxisome proliferator-activated receptors (PPARs)-ligand in rotenone-induced PD model in zebrafish, focusing on the gut-brain axis. Adult zebrafish were exposed to rotenone and erucic acid for 30 days. Liquid chromatography-mass spectrometry and tandem mass spectrometry (LC-MS/ MS) analysis was performed. Raw files were analysed by Proteome Discoverer 2.4 software; peptide lists were searched against Danio rerio proteins. STRING database was used for protein annotations or interactions. Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione S-transferase (GST), acetylcholinesterase and the expressions of PD-related genes were determined. Immunohistochemical tyrosine hydroxylase (TH) staining was performed. LC-MS/MS analyses allowed identification of over 2000 proteins in each sample. The 2502 and 2707 proteins overlapped for intestine and brain. The 196 and 243 significantly dysregulated proteins in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.