SummaryThe structural performance of bridge structures is temporal and is mainly controlled by the types of the applied loads. To continuously observe the structural performance of bridges, structural health monitoring sensors that include among many temperature sensors are used. The impact of nonuniform temperature distributions in bridge girders due to the environment thermal loads has been recognized by former researchers and bridge design codes. To evaluate these and other effects on the structural behavior of bridge structures, many field and experimental structural health monitoring studies were carried out. However, more researches are required to investigate the temperature distributions in other girder configurations. This work is directed to investigate the impact of air temperature and solar radiation on temperature gradient distributions in concrete-encased composite girders. For this purpose, an experimental concrete-encased steel girder segment was instrumented with thermocouples and other sensors. The experimental data recording continued for 6 months during the hot and cold seasons. Furthermore, a thermal finite element (FE) parametric study was conducted to investigate the effect of the girder size. The test results showed that the vertical and lateral temperature gradient distributions and the variation of the temperature gradients with time are controlled by the amount and location of the received solar radiations. The FE analysis showed that the daily temperature variations are higher in smaller girders, whereas the temperature gradients are smaller than in larger girders. Moreover, the FE results showed that the thickness of the girder's concrete members has an important impact on temperature gradients and temperature distributions.
Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.
In this study, an experimental work was directed toward comparing the flexural behavior of solid and hollow steel fiber-reinforced concrete beams. For this purpose, eight square cross-sectional beam specimens, four solid and four hollow, were prepared. One concrete mixture with four different steel fiber contents of 0, 0.5, 1.0, and 1.5% were used. The side length of the central square hole was 80 mm, whereas the cross-sectional side length was 150 mm. All beams were tested under four-point monotonic loading until failure. In addition to the solid and hollow beams, cylinders were cast to evaluate the compressive strength, splitting tensile strength, and modulus of elasticity, whereas prisms were used to conduct the fracture test. The test results showed that all fibrous beams failed in flexure, whereas those without fiber exhibited flexural-shear failure. In general, the flexural behavior of fibrous-beams was superior to that of beams without fiber. The hollow beams with fiber contents of 0, 0.5, and 1.0% were observed to withstand lower loads at cracking, yielding, and peak stages compared with their corresponding solid beams; this was not the case for the 1.5% fiber hollow beam, which exhibited a higher peak load than its corresponding solid beam. Although all eight beams exhibited ductility indices higher than 3.7, hollow beams exhibited better ductility than solid beams, showing higher ductility index values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.