The finishing of additive manufactured (AM) components is crucial for endowing them with fatigue resistance. Unfortunately, current AM processes naturally promote anisotropic surface characteristics that make it challenging to optimize finishing processes. In this study, bead-blasting is explored as a process for finishing Electron Beam Melted (EBM) Ti-6Al-4V. The effects of anisotropic roughness characteristics on the mechanics of bead-blasting are delineated using surface texture measurements via optical profilometry and residual stress measurements via X-ray diffraction. As-received surfaces resulting from AM, as well as those that have been Electrical Discharge Machined (EDM), are studied. It is seen that pre-processed roughness textures heavily influence the final textures and residual stresses. These linkages are quantified using a plasticity index as the governing metric—a rougher surface features a larger plastic index, which results in comparatively greater evolution of its texture characteristics than a smoother surface after equivalent bead-blasting treatments. The mechanics of this evolution are delineated using energy-controlled indentation as a model representing a single impact in bead-blasting. It is seen that rougher surfaces featuring complex textures in as-received states also produce complex stress states featuring a greater level of locally tensile stresses during indentation compared with smoother surfaces. Approaches to address these complications are proposed that can potentially transform a printed, non-functional surface into one that is optimized for fatigue resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.