As an attractive materials system for highperformance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 μJ cm −2 under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 μJ cm −2 for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mJ cm −2 threshold under twophotoexcitation, which is also the best among nanocrystals (compared to 0.76 mJ cm −2 from CdSe/CdS CQDs in the Fabry−Peŕot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.
We proposed and showed strongly orientationcontrolled Forster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid−air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (facedown), with near-unity surface coverage and across large areas over 20 cm 2 . These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole−dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d −4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Forster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.
Colloidal semiconductor quantum wells have emerged as a promising material platform for use in solution-processable lasers. However, applications relying on their optical gain suffer from nonradiative Auger decay due to multi-excitonic nature of light amplification in II-VI semiconductor nanocrystals. Here, we show sub-single exciton level of optical gain threshold in specially engineered CdSe/CdS@CdZnS core/crown@gradient-alloyed shell quantum wells. This sub-single exciton ensemble-averaged gain threshold of (Ng)≈ 0.84 (per particle) resulting from impeded Auger recombination, along with a large absorption cross-section of quantum wells, enables us to observe the amplified spontaneous emission starting at an ultralow pump fluence of ~ 800 nJ cm−2, at least three-folds better than previously reported values among all colloidal nanocrystals. Finally, using these gradient shelled quantum wells, we demonstrate a vertical cavity surface-emitting laser operating at a low lasing threshold of 7.5 μJ cm−2. These results represent a significant step towards the realization of solution-processable electrically-driven colloidal lasers.
Solution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe 1−x Te x /CdS core/multicrown heteronanoplatelets (NPLs), controlling the amount of Te up to 50% in the crown without changing their thicknesses, which significantly increases their colloidal and photostability under ambient conditions and at the same time preserving their attractive optical properties. Confirming the final lateral growth of CdS sidewalls with X-ray photoelectron spectroscopy, energy-dispersive analysis, and photoelectron excitation spectroscopy, we found that the successful coating of this CdS crown around the periphery of conventional type-II NPLs prevents the unwanted formation of needle-like stacks, which results in reduction of the undesired scattering losses in thin-film samples of these NPLs. Owing to highly efficient exciton funneling from the outmost CdS crown accompanied by the reduced scattering and very low waveguide loss coefficient (∼18 cm −1), ultralow optical gain thresholds of multicrown type-II NPLs were achieved to be as low as 4.15 μJ/cm 2 and 2.48 mJ/cm 2 under one-and two-photon absorption pumping, respectively. These findings indicate that the strategy of using engineered advanced heterostructures of nanoplatelets provides solutions for improved colloidal stability and enables enhanced photonic performance.
Whispering gallery mode (WGM) resonators are shown to hold great promise to achieve high-performance lasing using colloidal semiconductor nanocrystals (NCs) in solution phase. However, the low packing density of such colloidal gain media in the solution phase results in increased lasing thresholds and poor lasing stability in these WGM lasers. To address these issues, here optical gain in colloidal quantum wells (CQWs) is proposed and shown in the form of high-density close-packed solid films constructed around a coreless fiber incorporating the resulting whispering gallery modes to induce gain and waveguiding modes of the fiber to funnel and collect light. In this work, a practical method is presented to produce the first CQW-WGM laser using an optical fiber as the WGM cavity platform operating at low thresholds of ≈188 µJ cm −2 and ≈1.39 mJ cm −2 under one-and two-photon absorption pumped, respectively, accompanied with a record low waveguide loss coefficient of ≈7 cm −1 and a high net modal gain coefficient of ≈485 cm −1 . The spectral characteristics of the proposed CQW-WGM resonator are supported with a numerical model of full electromagnetic solution. This unique CQW-WGM cavity architecture offers new opportunities to achieve simple high-performance optical resonators for colloidal lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.