Cataloged from PDF version of article.Colloidal semiconductor quantum wells, also commonly known as nanoplatelets (NPLs), have arisen among the most promising materials for light generation and harvesting applications. Recently, NPLs have been found to assemble in stacks. However, their emerging characteristics essential to these applications have not been previously controlled or understood. In this report, we systematically investigate and present excitonic properties of controlled column-like NPL assemblies. Here, by a controlled gradual process, we show that stacking in colloidal quantum wells substantially increases exciton transfer and trapping. As NPLs form into stacks, surprisingly we find an order of magnitude decrease in their photoluminescence quantum yield, while the transient fluorescence decay is considerably accelerated. These observations are corroborated by ultraefficient Forster resonance energy transfer (FRET) in the stacked NPLs, in which exciton migration is estimated to be in the ultralong range (>100 nm). Homo-FRET (i.e., FRET among the same emitters) is found to be ultraefficient, reaching levels as high as 99.9% at room temperature owing to the close-packed collinear orientation of the NPLs along with their large extinction coefficient and small Stokes shift, resulting in a large Forster radius of similar to 13.5 nm. Consequently, the strong and long-range homo-FRET boosts exciton trapping in nonemissive NPLs, acting as exciton sink centers, quenching photoluminescence from the stacked NPLs due to rapid nonradiative recombination of the trapped excitons. The rate-equation-based model, which considers the exciton transfer and the radiative and nonradiative recombination within the stacks, shows an excellent match with the experimental data. These results show the critical significance of stacking control in NPL solids, which exhibit completely different signatures of homo-FRET as compared to that in colloidal nanocrystals due to the absence of inhomogeneous broadening
Objectives: We undertook the present study to investigate the possible alteration of oxidant/antioxidant status in the circulation of patients with prostate cancer and benign prostatic hyperplasia.Design and methods: Thiobarbituric acid reactive substances (TBARS), the enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and copper (Cu) and zinc (Zn) levels were estimated in the erythrocytes of 25 non-metastatic prostate cancer patients, 36 benign prostatic hyperplasia (BPH) patients and 24 age-and sex-matched healthy subjects (controls).Results: TBARS concentrations were significantly increased, while erythrocyte GPX and SOD activities were significantly decreased in the prostate cancer group versus controls (P b 0.001) and BPH group (P b 0.05). Zn levels were lowered in prostate cancer patients versus controls (P b 0.01) with no significant changes between BPH and cancer groups. Similarly, lipid peroxidation was increased (P b 0.05) with decreased SOD activity and Zn level (P b 0.05) in BPH versus controls.Conclusion: These results reveal an alteration in the lipid peroxidation index, with concomitant changes in the antioxidant defense system in prostate cancer patients compared to BPH patients. We hypothesize that an altered prooxidant-antioxidant balance may lead to an increase in oxidative damage and consequently may play an important role in prostate carcinogenesis.
Here, the CdSe/CdS@CdS core/crown@shell heterostructured nanoplatelets (NPLs) resembling a platelet-in-box structure are developed and successfully synthesized. It is found that the core/crown@shell NPLs exhibit consistently substantially improved photoluminescence quantum yield compared to the core@shell NPLs regardless of their CdSe-core size, CdS-crown size, and CdS-shell thickness. This enhancement in quantum yield is attributed to the passivation of trap sites resulting from the critical peripheral growth with laterally extending CdS-crown layer before the vertical shell growth. This is also verifi ed with the disappearance of the fast nonradiative decay component in the core/crown NPLs from the time-resolved fl uorescence spectroscopy. When compared to the core@shell NPLs, the core/crown@shell NPLs exhibit relatively symmetric emission behavior, accompanied with suppressed lifetime broadening at cryogenic temperatures, further suggesting the suppression of trap sites. Moreover, constructing both the CdS-crown and CdS-shell regions, signifi cantly enhanced absorption cross-section is achieved. This, together with the suppressed Auger recombination, enables the achievement of the lowest threshold amplifi ed spontaneous emission (≈20 µJ cm −2 ) from the core/crown@shell NPLs among all different architectures of NPLs. These fi ndings indicate that carefully heterostructured NPLs will play a critical role in building high-performance colloidal optoelectronic devices, which may even possibly challenge their traditional epitaxially grown thin-fi lm based counterparts.
Objectives: The study was aimed to evaluate the oxidative/nitrosative stress status in prostate cancer (CaP) and benign prostatic hyperplasia (BPH). Design and methods: 312 men from two different populations were included: 163 men from Macedonia (73 CaP patients, 67 BPH patients and 23 control subjects) and 149 men from Turkey (34 prostate cancer patients, 100 BPH patients and 15 control subjects). We measured erythrocyte malondialdehyde (MDA) levels, erythrocyte activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT); plasma nitrite/nitrate (NO 2 − /NO 3 − ), cGMP and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels.Results: A similar pattern of alteration in the oxidative/nitrosative stress-related parameters was found in both, Macedonian and Turkish studied samples: higher MDA concentrations with lower GPX and CuZn-SOD activities in CaP patients versus controls and BPH groups. The CAT activity was decreased in the CaP patients versus controls in the Turkish studied sample. Furthermore, CaP patients had increased plasma NO 2 − /NO 3 − and cGMP levels versus controls and BPH groups in both studied samples.Conclusions: This study has confirmed an imbalance in the oxidative stress/antioxidant status and revealed an altered nitrosative status in prostate cancer patients.
Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c‐ALD) provides the ability to produce their core/shell heterostructures. However, as c‐ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near‐unity efficiency CdSe/ZnS NPLs are shown using hot‐injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI‐shell hetero‐NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c‐ALD shell‐coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI‐shell NPLs exhibit ultralow gain thresholds reaching ≈7 µJ cm−2. Despite being annealed at 500 K, these ZnS‐HI‐shell NPLs possess low gain thresholds as small as 25 µJ cm−2. These findings indicate that the proposed 573 K HI‐shell‐grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.