ABSTRACT:In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.
The Polarimetric Synthetic Aperture Radar technique has provided various opportunities and challenges in agricultural activities mainly on crop management. The aim of this study is to investigate the sensitivity of 10 parameters derived from multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) data, to crop height and canopy coverage (CC) of maize, sunflower, and wheat. The correlation coefficient values indicate a high correlation for maize during the early growing stage. The coefficient determinations (R2) of 0.82 and 0.81 indicate that there is a strong relationship between the maize height and SAR parameters including VV + VH and VV, respectively. The maize CC is well correlated with VV parameter (R2 = 0.73), but it is observed that at the later growing stage the correlation became weaker. This means that the sensitivity decreases with increasing vegetation cover growth. Compared to maize, the sensitivity of SAR parameters to wheat variables is often good at the early stage. However, the highest correlation with wheat height represented by Alpha (α) decomposition parameter (R2 = 0.67). The sunflower height has an insignificant correlation with the majority of SAR parameters and only VH polarization shows low sensitivity (R2 = 0.31). The sunflower CC shows relatively higher correlation with VV polarization (R2 = 0.46) at the early stage while no considerable correlation is observed at the later stage. It is found that Sentinel-1 has a high potential for estimation of crop height and CC of the maize as a broad-leaf crop. The same is not true for sunflower as another broad-leaf crop.
The classification accuracy of remotely sensed data and its sensitivity to classification algorithms have a critical importance for the geospatial community, as classified images provide the base layers for many applications and models. Support Vector Machines (SVMs), a non-parametric statistical learning method that has recently been used in numerous applications in image processing. The SVMs need user-defined parameters and each parameter has different impact on kernels hence the classification accuracy of SVMs is based upon the choice of the parameters and kernels. The objective of this study is to investigate the sensitivity of SVM architecture including internal parameters and kernel types on landuse classification accuracy of RapidEye imagery for the study area in Turkey. Four types of kernels (linear, polynomial, radial basis function, and sigmoid) were used for the SVM classification. A total of 63 different models were developed and implemented for sensitivity analysis of SVM architecture. The traditional Maximum Likelihood Classification (MLC) method was also performed for comparison. The classification accuracies of the best model for each kernel type and MLC are 85.63%, 83.94%, 83.94%, 83.82% and 81.64% for polynomial, linear, radial basis function, sigmoid kernels and MLC, respectively. The results suggest that the choice of model parameters and kernel types play an important role on SVMs classification accuracy. Best model of polynomial kernel outperformed all SVMs models and gave the highest classification accuracy of 85.63% with RapidEye imagery.
Commission VII, WG VII/4KEY WORDS: Vegetation indices, RapidEye, NDVI, NDRE, GNDVI, SVM ABSTRACT:Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46% was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands..
With the latest development and increasing availability of high spatial resolution sensors, earth observation technology offers a viable solution for crop identification and management. There is a strong need to produce accurate, reliable and up to date crop type maps for sustainable agriculture monitoring and management. In this study, RapidEye, the first high-resolution multi-spectral satellite system that operationally provides a Red-edge channel, was used to test the potential of the data for crop type mapping. This study was investigated at a selected region mostly covered with agricultural fields locates in the low lands of Menemen (İzmir) Plain, TURKEY. The potential of the three classification algorithms such as Maximum Likelihood Classification, Support Vector Machine and Object Based Image Analysis is tested. Accuracy assessment of land cover maps has been performed through error matrix and kappa indexes. The results highlighted that all selected classifiers as highly useful (over 90%) in mapping of crop types in the study region however the object-based approach slightly outperforming the Support Vector Machine classification by both overall accuracy and Kappa statistics. The success of selected methods also underlines the potential of RapidEye data for mapping crop types in Aegean region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.